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Résumé

These lecture notes introduce analytical tools, methods and results describing the growth
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6.2 Quelques résultats généraux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.3 Catalogues tri-dimentionnels : espace des redshifts . . . . . . . . . . . . . . . . . 22
6.4 Le spectre de puissance en espace des redshifts . . . . . . . . . . . . . . . . . . . 24

7 Conclusion and perspectives 26

1



Bibliographie

๏ P.J.E. Peebles, The Large Scale Structure of the Universe, 1980

๏ S. Dodelson, Modern Cosmology, 2003
๏ J.-Ph. Uzan et P. Peter, Cosmologie Primordiale, 2006 
๏ F. Bernardeau, Cosmologie, des fondements théoriques aux observations, 2007

๏ Articles de revue/cours
๏ F. Bernardeau, S. Colombi, E. Gaztanaga, and R. Scoccimarro, « Large-scale 

structure of the Universe and cosmological perturbation theory », Phys. Rep 
2002

๏ F. Bernardeau, « The evolution of the large-scale structure of the universe: 
beyond the linear regime », Les Houches 2013

๏ ??, Les Houches 2013



Observing the LSS of the universe



The CMB sky, temperature and polarization

A linear sky at 10-5 precision



The linear sky
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Figure 1: Top CMB angular power spectra determinations as of mid-2015 (from Planck Collaboration et al. (2015j) and
Calabrese add a true ref for Calabrese). This corresponds to the determination (with S/N> 1) of 1 114 000 modes
measured with TT , 96 000 with EE (60 000 with T E, not shown), and tens of modes in BB (and weak constraints on
T B and EB) . Bottom Lensing potential power spectrum measurement from Planck (Planck Collaboration et al. 2015g),
as well as earlier measurements. The goal for the future is now to measure the million polarisation modes which are still
unknown.
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CMB angular power spectra determinations 
as of mid-2015 (from Planck Collaboration 
et al. 2015 and Calabrese 2016). This 
corresponds to the determination (with S/N > 
1) of 1 114 000 modes measured with TT, 96 
000 with EE (60 000 with TE, not shown), 
and tens of modes in BB (and weak 
constraints on T B and E B) . 
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LSS is a (new) treasure trove : many more modes

Galaxy positions in z-space

Planck full sky mass map

multi-plane weak lensing 
observations



The development of cosmological 
instabilities across time and scale

Beyond the linear 
regime domain
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- identify relevant observables (power spectra and 
beyond)

- controlled predictions of identified observables 
- controlled predictions of covariances between such 

observables (modes are not independent)  
- theoretical error structure.

A theorist work program

�⇢(~k) =

Z
d3~q T (~k, ~q) �adiab(~q) +

Z
d3~q1d

3~q2 T (~k, ~q1, ~q2) �adiab(~q1)�adiab(~q2) +
...

Modes are now full functionals of the initial modes. At best 
they can expended with respect to initial metric fluctuations

Entering the nonlinear regime 



A self-gravitating 
expanding dust fluid
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The Vlasov equation

So let us start assuming that the universe is full of dust like
particles with the same mass, m.
The first step of the calculation is to introduce the phase space
density function, f (x,p) d3x d3p, which is the number of particles
per volume element d3x d3p where the position x of the particles is
expressed in comoving coordinates and the particle conjugate
momentum p reads

p = uma, (1)

where a is the expansion factor, u is the peculiar velocity, i.e. the
di↵erence of the physical velocity of the Hubble expansion.



The Vlasov equation

Then the conservation of the particles together with the Liouville
theorem when the the two-body interactions can be neglected
implies that the total time derivative of f vanishes so that

df

dt
=

@

@t
f (x,p, t) +

dx

dt

@

@x
f (x,p, t) +

dp

dt

@

@p
f (x,p, t) = 0. (2)

This is the Vlasov equation.



The Vlasov equation

The time variation of the position can be expressed in terms of p
and one gets

dx

dt
=

p

ma2
. (3)

The time variation of the momentum in general can be obtained
from the geodesic equation. Assuming the metric perturbations are
small and for scales much below the Hubble scale we have

dp

dt
= �mr

x

�(x, t) (4)

where � is the potential. We recall that in the context of metric
perturbation in an expanding universe the potential �(x) is sourced
by the density contrast (of all species). In our context we simply
have

��(x) =
4⇡Gm

a

✓Z
f (x,p, t)d3p� n

◆
(5)

where n is the spatial average of
R
f (x,p, t)d3p.



The Vlasov equation

We then have

@

@t
f (x,p, t)+

p

ma2
@

@x
f (x,p, t)�mr

x

�(x, t)
@

@p
f (x,p, t) = 0. (6)

The system (6, 5) forms the Vlasov-Poisson equation. This is
precisely the set of equations the N-body simulations attempt to
solve.



The motion equations

We can now derive the basic conservation equations we are going
to use from the first 2 moments of the Vlasov equation. Let us
define the density field per volume d3r as

⇢(x, t) =
m

a3

Z
d3p f (x,p). (7)

It can be decomposed in an homogeneous form and an
inhomogeneous form,

⇢(x, t) = ⇢(t)(1 + �(x, t)). (8)

Note that ⇢(t) the spatial averaged of ⇢(x, t) should behave like
a(t)�3 for non relativistic species.



The motion equations

One should then define the higher order moment of the phase
space distribution: the mean velocity flow is defined as (for each
component),

ui (x, t) =
1R

d3p f (x,p, t)

Z
d3p

pi
ma

f (x,p, t), (9)

and the second moment defines the velocity dispersion �ij(x, t),

ui (x, t)uj(x, t)+�ij(x, t) =
1R

d3p f (x,p, t)

Z
d3p

pi
ma

pj
ma

f (x,p, t).

(10)



The motion equations

The first two moments of the Vlasov equation give then the
conservation and Euler equations, respectively

@�(x, t)

@t
+

1

a
[(1 + �(x, t))ui (x, t)],i = 0 (11)

and

@ui (x, t)

@t
+

ȧ

a
ui (x, t) +

1

a
uj(x, t)ui (x, t),j =

�1

a
�(x, t),i �

(⇢(x, t)�ij(x, t)),j
⇢(x, t) a

. (12)

The first term of the right hand side of eqn (12) is the
gravitational force, the second is due to the pressure force which in
general can be anisotropic. In the context we are interested in, it
actually vanishes until the formation of the first caustics.



Single flow approximation

The early stages of the gravitational instabilities are indeed
characterized, assuming the matter is non-relativistic, by a
negligible velocity dispersion when it is compared to the velocity
flows, i.e. much smaller than the velocity gradients induced by the
density fluctuations of the scales of interest. This is the single flow
approximation. It simply states that one can assume

f (x,p, t) =
a3 ⇢(x, t)

m
�(3)[p�ma u(x, t)], (13)

to a good approximation. This approximation will naturally break
at the time of shell crossings when di↵erent flows – pulled toward
one-another by gravity – cross. The Vlasov-Poisson equation in the
single flow regime is the system that will be studied throughout
these lecture notes, from linear to non nonlinear regime.



Single flow approximation
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One flow 
region.

Three flow 

region after first 

caustic crossing.

Multi flow 

region leading 

to virialization.

Figure: Schematic description of phase space after the first shell crossings
and emergence of multi-flow regions. The figure is for 1D dynamics.
From left to right, one can see regions with growing number of flows
after dark matter caustic crossings.



The curl modes

In the single flow regime, one can note that the source term of the
Euler equation is potential, implying that it cannot generate any
curl mode in the velocity field. More precisely, one can decompose
any three-dimensional field in a gradient part and a curl part

ui (x) =  (x),i +wi (x) (14)

where wi ,i = 0. Defining the local vorticity as

!k(x) = ✏ijkui ,j(x) (15)

where ✏ijk is the totally anti-symmetric Levi-Civita tensor one can
easily show that

!k(x) = ✏ijkwi ,j(x). (16)



The curl modes

And applying the operator ✏ijkrj to the Euler equation one gets
(see [?])

@

@t
!k +

ȧ

a
!k � ✏ijk✏lmi (ul !m),j = 0. (17)

This equation actually expresses the fact that the vorticity is
conserved throughout the expansion. In the linear regime that is
when the last term of this equation is dropped it simply means
that the vorticity scales like 1/a. In the subsequent stage of the
dynamics the vorticity can only grow in contracting regions but it
is still somehow conserved, it cannot be created out of potential
modes only. That will be the case until shell crossing where the
anisotropic velocity dispersion can then induce vorticity. This has
been explicitly demonstrated in various studies [?, ?, ?]. As a
consequence, in the following, curl modes in the vector flied will
always be neglected.



The linear theory

We now proceed to explore the linear regime of the Vlasov-Poisson
system. One objective is to make contact with earlier stages of the
gravitational dynamics and the second is to introduce the notion of
Green function we will use in the following.



The linear modes

The linearization of the motion equation is obtained when one
assumes that the terms [�(x, t))ui (x, t)],i and uj(x, t)ui (x, t),j in
respectively the continuity and the Euler equation vanish. This is
obtained when both the density contrast and the velocity gradients
in units of H are negligible. The linearized system is obtained in
terms of the velocity divergence

✓(x, t) =
1

aH
ui ,i (18)

so that the system now reads

@

@t
�(x, t) + H✓(x, t) = 0 (19)

@

@t
✓(x, t) + 2H✓ +

Ḣ

H
✓(x, t) = �3

2
H⌦m(t)�(x, t) (20)

after taking the divergence of the Euler equation. We have
introduced here the Hubble parameter H = ȧ/a and used the
Friedman equation H2 = 8⇡/3 G⇢c(t) together with the definition
of ⌦m = ⇢(t)/⇢c(t).



The linear modes

The resolution of this system is now simple. It can be obtained
after eliminating the velocity divergence and one gets a second
order dynamical equation,

@2

@ t2
�(x, t) + 2H

@

@ t
�(x, t)� 3

2
H2⌦m �(x, t) = 0, (21)

for the density contrast. It is to be noted that the spatial
coordinates are here just labels: there is no operator acting of the
physical coordinates. This is quite a unique feature in the growth
of instabilities in a pressureless fluid. That implies in particular
that the linear growth rate of the fluctuations will be independent
on scale. The time dependence of the linear solution is given by
the two solutions of

D̈ + 2H Ḋ � 3

2
H2⌦m D = 0, (22)

one of which is decaying and the other is growing with time.



The linear modes, Einstein de Sitter case

For an Einstein de-Sitter (EdS) background (a universe with no
curvature and with a critical matter density) the solutions read

DEdS

+ (t) / t2/3, DEdS

� (t) / 1/t, (23)

that is DEdS

+ (t) is proportional to the expansion factor. This result
gives the time scale of the growth of structure. This is what
permits a direct comparison between the amplitude of the metric
perturbations at recombination and the density perturbation in the
local universe. Note that it implies that the potential, for the
corresponding mode, is constant (see the Poisson equation).



The linear modes, general solutions

Il n’existe pas de solution générale à (22) qui soit valable pour tout
modèle cosmologique. Cependant si on admet que le contenu de
l’univers à bas redshift correspond à un mélange de matière, d’une
énergie du vide correspondant à une simple constante
cosmologique, en présence éventuellement d’un terme de courbure,
alors la constante de Hubble prend la forme,

H = H0

q
⌦(0)
m

a�3 + (1� ⌦(0)
m

� ⌦(0)
˜

)a�2 + ⌦⇤, (24)

et est solution de (22). C’est la solution décroissante. La solution
croissante peut facilement être obtenue par méthode de variation
des constantes. On obtient ainsi, sous les hypothèses mentionnées
plus haut,

D�(t) / H(t), (25)

D+(t) / H(t)

Z
dt

(aH)2
. (26)



The linear theory
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Figure: Comportement des taux de croissance (lignes épaisses) et de
décroissance (lignes fines) des instabilités gravitationnelles pour un
univers Einstein-de Sitter (lignes continues), un univers avec

⌦(0)
m = 0.3, ⌦⇤ = 0 (lignes pointillées longues) et un univers avec

⌦(0)
m = 0.3, ⌦(0)

⇤ = 0.7 (lignes pointillées courtes).



The linear theory

Si on se restreint à des cosmologies sans constante cosmologique,
⌦⇤ = 0, D+ peut s’exprimer analytiquement en fonction de a,

D+(a) / 1 +
3⌦(0)

m

a� a⌦(0)
m

+ 3

vuut(a(⌦(0)
m

� 1)� ⌦(0)
m

)⌦(0)
m

2

a3(⌦(0)
m

� 1)3

⇥ log

0

@

vuuta

 
1

⌦(0)
m

� 1

!
+ 1�

vuuta

 
1

⌦(0)
m

� 1

!1

A



The linear theory

Pour un contenu en énergie matière arbitraire, il faut résoudre bien
sûr l’équation (22). Les résultats d’une telle intégration sont
montrés sur la figure 2. Une forme plus simple existe cependant
dans le cas d’univers plat avec constante cosmologique. Dans ce
cas la dépendance temporelle de D+ est donnée par

D+(t) = 2F1

✓
1,

1

3
;
11

6
;� sinh2

✓
3↵t

2

◆◆
sinh

2
3

✓
3↵t

2

◆
, (27)

et le facteur f prend la forme

f = 1� 6

11
2F1

�
2, 43 ;

17
6 ;� sinh2

�
3↵t
2

��
sinh2

�
3↵t
2

�

2F1
�
1, 13 ;

11
6 ;� sinh2

�
3↵t
2

�� (28)

avec ↵ =
p
⇤/3.



La relation densité-vitesse

Pour être complet, il faut bien sûr expliciter la relation entre le
contraste de densité et la divergence du champ de vitesse.
L’équation de continuité peut se réécrire,

a
@

@a
� + ✓ = 0. (29)

Le champ ✓ s’écrit donc,

✓(t, x) =
@ logD+

@ log a
�+(t, x) +

@ logD�
@ log a

��(t, x) (30)

où �±(t, x) = D±(t)�±(x). Pour un univers Einstein-de Sitter,
cette relation devient

✓(t, x) = �+(t, x)�
3

2
��(t, x). (31)



La relation densité-vitesse

Poursuivons l’examen de la relation densité-vitesse. Si on se limite
au terme croissant le facteur de proportionnalité entre ✓ et � est
donc la dérivée logarithmique de D+ avec le facteur d’expansion,

f ⌘ d logD+

d log a
. (34)

Ce facteur vaut 1 pour un univers Einstein de Sitter. On peut bien
sûr le calculer analytiquement ou numériquement selon les cas. Par
exemple pour un univers plat avec constante cosmologique une
bonne paramétrisation de f est,

f (⌦
m

) = ⌦5/9 ⇡ ⌦0.55; (35)

et pour un univers sans constante cosmologique,

f (⌦
m

) = ⌦3/5. (36)

La figure (4) compare les résultats exacts à ces formes approchées.
On voit que l’écart est tout au plus de quelques pour-cents.



La relation densité-vitesse
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Figure: Facteur f , équation (34), divisé par sa valeur estimée, équations
(35-36), en fonction de ⌦m pour un espace sans constante cosmologique
(ligne continue) ou pour un espace plat (tirets).



Linear theory: the Green functions

The previous results show that the linear density field can be
written in general

�(x, t) = �+(x)D+(t) + ��(x)D�(t) (37)

and

✓(x, t) = � d

d log a
D+ �+(x)�

d

d log a
D���(x). (38)

The actual growing and decaying modes can then be obtained by
inverting this system. For instance for an Einstein de Sitter
background one gets

�+(x)D+(t) =
D+(t)

D+(t0)


3

5
�(x, t0)�

2

5
✓(x, t0)

�
, (39)

��(x)D�(t) =
D�(t)

D�(t0)


2

5
�(x, t0) +

2

5
✓(x, t0)

�
, (40)

and similar results for the velocity divergence.



Linear theory: the Green functions

Following [?], this result can be encapsulated in a simple form after
one introduces the doublet  a(k, ⌧),

 a(k, ⌧) ⌘
⇣
�(x, t), �✓(x, t)

⌘
, (41)

where a is an index whose value is either 1 (for the density
component) or 2 (for the velocity component).



Linear theory: the Green functions

The linear growth solution can now be written

 a(x, t) = g b
a (t, t0) b(x, t0) (42)

where gb
a is the Green function of the system. It is usually written

with the following time variable,

⌘ = logD+ (43)

(not to be mistaken with the conformal time). For an Einstein de
Sitter universe, we have explicitly,

g b
a (⌘, ⌘0) =

e⌘�⌘0

5


3 2
3 2

�
+

e�
3
2 (⌘�⌘0)

5


2 �2
�3 3

�
. (44)

We will see in the following that, provided the doublet  a is
properly defined, this form remains practically unchanged for any
background.



Linear theory: The general background case

For a general background, it is fruitful to extent the definition of
the doublet to,

 a(x, ⌘) ⌘
⇣
�(x, ⌘), � 1

f+
✓(x, ⌘)

⌘
, (45)

where

f+ =
d logD+

d log a
(46)

Defining ✓̂ = �✓(x, ⌘)/f+ and for the time variable ⌘, the
linearized motion equations indeed read

@

@⌘
�(x, ⌘)� ✓̂(x, ⌘) = 0 (47)

@

@⌘
✓̂(x, ⌘)

✓
3

2

⌦m

f 2+
� 1

◆
✓̂ � 3

2

⌦m

f 2+
�(x, ⌘) = 0, (48)
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The origin of stochasticity
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Figure: Development of linear metric perturbation across scale and time.



The origin of stochasticity

In models of inflation the stochastic properties of the fields
originate from quantum fluctuations of a scalar field, the inflaton.
This field has quantum fluctuations that can be decomposed in
Fourier modes using the creation and annihilation operators a†

k

and
a
k

for a wave mode k,

�' =

Z
d3k

h
a
k

 k(t) exp(ik.x) + a†
k

 ⇤
k(t) exp(�ik.x)

i
. (55)

The operators obey the standard commutation relation,

[a
k

, a†�k

0 ] = �D(k+ k

0), (56)

and the mode functions  k(t) are obtained from the Klein-Gordon
equation for ' in an expanding Universe.



The origin of stochasticity

We give here its expression for a de-Sitter metric (i.e. when the
spatial sections are flat and H is constant),

 k(t) =
H

(2 k)1/2 k

✓
i+

k

aH

◆
exp


i k

aH

�
, (57)

where a and H are respectively the expansion factor and the
Hubble constant that are determined by the overall content of the
Universe through the Friedmann equations.
When the modes exit the Hubble radius, k/(aH) ⌧ 1, one can see
from eqn (57) that the dominant mode reads,

'
k

⇡ iHp
2k3/2

⇣
a
k

+ a†�k

⌘
, �' =

Z
d3k'

k

e i k.x. (58)

Therefore these modes are all proportional to a
k

+ a†�k

.



The origin of stochasticity

One important consequence of this is that the quantum nature of
the fluctuations has disappeared [?, ?]: any combinations of '

k

commute with each other. The field ' can then be seen as a
classic stochastic field where ensemble averages identify with
vacuum expectation values,

h...i ⌘ h0|...|0i. (59)



The origin of stochasticity

After the inflationary phase the modes re-enter the Hubble radius.
They leave imprints of their energy fluctuations in the gravitational
potential, the statistical properties of which can therefore be
deduced from eqns (56, 58). All subsequent stochasticity that
appears in the cosmic fields can thus be expressed in terms of the
random variable '

k

. The linear theory calculation precisely tells us
how each mode, in each fluid component, grows across time, i.e. it
provides us with the so-called transfer functions, Ta(k, ⌘, ⌘0),
defined as

�a(k, ⌘) = Ta(k, ⌘, ⌘0)�'(k, ⌘0) (60)

where ⌘0 is a time which corresponds to an arbitrarily early time.



Statistical homogeneity and isotropy

In the following the density contrast will be decomposed in Fourier
modes that, for a flat universe, are defined such as

�(x) =

Z
d3k

(2⇡)3/2
�(k) exp(ik · x) (61)

or equivalently

�(k) =

Z
d3x

(2⇡)3/2
�(x) exp(�ik · x). (62)

The observable quantities of interest are actually the statistical
properties of such a field, whether it is represented in real space or
in Fourier space.



Statistical homogeneity and isotropy

The Cosmological Principle, e.g. that the assumption that the
Universe is statically isotropic and homogeneous, implies that real
space correlators are homogeneous and isotropic which for instance
implies that

⌦
�(x)�(x+ r)

↵
is a function of the separation r only.

This defines the two-point correlation function,

⇠(r) =
⌦
�(x)�(x+ r)

↵
. (63)

In Fourier space, the two point correlator of the Fourier modes
then takes the form,

⌦
�(k)�(k0)

↵
=

Z
d3x

(2⇡)3/2
d3r

(2⇡)3/2
⇠(r) exp[�i(k+ k

0) · x� ik0 · r]

= �
Dirac

(k+ k

0)

Z
d3r ⇠(r) exp(ik · r)

⌘ �
Dirac

(k+ k

0)P(k), (64)

where P(k) is the power spectrum of the density field, e.g. the
cross-correlation matrix is symmetric in Fourier space.



��k�k�⇥ = �Dirac(k + k�) P (k)

Power spectrum



Statistical homogeneity and isotropy

All these relations apply to the observed fields. However in case of
the primordial fluctuations, the field �'(k) corresponds to a free
field from a quantum mechanical point of view. That makes it
eventually a Gaussian classical field. As such it obeys the Wick
theorem. The latter tells us that higher order correlators can then
be entirely constructed from the power spectrum (from pair
associations) through the relations,

⌦
�'(k1) . . . �'(k2p+1)

↵
= 0 (65)

⌦
�'(k1) . . . �'(k2p)

↵
=

X

pair associations

Y

p pairs (i,j)

⌦
�'(ki )�'(kj)

↵
.

These relations apply as well to any linear combinations of the
primordial field, and therefore to any field computed in the linear
regime.



Moments and cumulants

In the nonlinear regime however, fields also exhibit higher order
non-trivial correlation functions that cannot be reconstructed from
the two-point order correlators. They are defined as the connected
part (denoted with subscript c) of the joint ensemble average of
fields in an arbitrarily number of locations. Formally, for the
density field, it reads,

h�(x1), . . . , �(xN)i = h�(x1), . . . , �(xN)ic
+

X

S2P({x1,...,xn})

Y

si2S
h�(xsi (1)), . . . , �(xsi (#si ))ic , (66)

where the sum is made over the proper partitions (any partition
except the set itself) of {x1, . . . , xN} and si is thus a subset of
{x1, . . . , xN} contained in partition S. When the average of �(x) is
defined as zero, only partitions that contain no singlets contribute.



Moments and cumulants

c
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Figure: Representation of the connected part of the moments.
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Figure: Writing of the three-point moment in terms of connected parts.



Moments and cumulants

The decomposition in connected and non-connected parts can be
easily visualized. It means that any ensemble average can be
decomposed in a product of connected parts. They are defined for
instance in Fig. 6. The tree-point moment is “written” in Fig. 7.
Because of homogeneity of space h�(k1) . . . �(kN)ic is always
proportional to �D(k1 + · · ·+ kN). Then we can define
PN(k1, . . . , kN) with

h�(k1) . . . �(kN)ic = �D(k1 + · · ·+ kN)PN(k1, . . . , kN). (67)

One case of particular interest is for n = 3, the bispectrum, which
is usually denoted by B(k1, k2, k3). Note that it depends on 2
wave modes only, and it depends on 3 independent variables
characterizing the triangle formed by the 3 wave modes (for
instance 2 lengths and 1 angle).



Moment and cumulant generating functions

It is convenient to define a function from which all moments can
be generated, namely the moment generating function. It can be
defined2 for any number of random variables. Here we give its
definition for the local density field. It is defined by

M(t) ⌘
1X

p=0

h⇢pi
p!

tp = hexp(t�)i. (68)

The moments can obviously obtained by subsequent derivatives of
this function at the origin t = 0. A cumulant generating function
can similarly be defined by

C(t) ⌘
1X

p=2

h⇢pic
p!

tp. (69)

2
It is to be noted however that the existence of moments – which itself is

not guaranteed for any stochastic process – does not ensure the existence of

their generating function as the series defined in (68) can have a vanishing

converging radius. Such a case is encountered for a lognormal distribution for

instance and it implies that the moments of such a stochastic process do not

uniquely define the probability distribution function.



Moment and cumulant generating functions

A fundamental result is that the cumulant generating function is
given by the logarithm of the moment generation function

M(t) = exp[C(t)]. (70)

In case of a Gaussian probability distribution function, this is
straightforward to check since hexp(t�)i = exp(�2t2/2).
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Linear theory: The general background case

For a general background, the doublet is defined as,

 a(x, ⌘) ⌘
⇣
�(x, ⌘), � 1

f+
✓(x, ⌘)

⌘
, (45)

where

f+ =
d logD+

d log a
(46)

Defining ✓̂ = �✓(x, ⌘)/f+ and for the time variable ⌘ = logD+, the
linearized motion equations indeed read

@

@⌘
�(x, ⌘) � ✓̂(x, ⌘) = 0 (47)

@

@⌘
✓̂(x, ⌘) +

✓
3

2

⌦m

f 2+
� 1

◆
✓̂ � 3

2

⌦m

f 2+
�(x, ⌘) = 0, (48)



Linear theory: The general background case

It can be rewritten as

@

@⌘
 a(x, ⌘) + ⌦

b
a (⌘) b(x, ⌘) = 0, (49)

with

⌦ b
a (⌘) =

 
0 �1

�3
2
⌦m
f 2+

3
2
⌦m
f 2+

� 1

!
. (50)



A field representation of the nonlinear motion equations

Inserting the non-linear terms one eventually gets,

@

@⌘
 

a

(k, ⌘) + ⌦ b

a

(⌘) 
b

(k, ⌘) = � bc

a

(k1, k2)  
b

(k1, ⌘)  c

(k2, ⌘),

(73)

where ⌦ b

a

(⌘) is defined in eqn (50) and where (and that will be
the case henceforth) we use the convention that repeated Fourier
arguments are integrated over and the Einstein convention on
repeated indices, and where the symmetrized vertex matrix � bc

a

describes the non linear interactions between di↵erent Fourier
modes.



A field representation of the nonlinear motion equations

The components of � bc
a are given by

� 22
2 (k1, k2) = �

Dirac

(k� k1 � k2)
|k1 + k2|2(k1 · k2)

2k21k
2
2

,

� 21
1 (k1, k2) = �

Dirac

(k� k1 � k2)
(k1 + k2) · k1

2k21
, (74)

� bc
a (k1, k2) = � cb

a (k2, k1), and � = 0 otherwise, where �
Dirac

denotes the Dirac distribution function. The matrix � bc
a is

independent on time (and on the background evolution) and
encodes all the non-linear couplings of the system.



A field representation of the nonlinear motion equations

One can then take advantage of the knowledge of the Green
function of this system to write a formal solution of eqn (73) as

 a(k, ⌘) = g b
a (⌘)  b(k, ⌘0) +

+

Z ⌘

⌘0

d⌘0 g b
a (⌘, ⌘0) � cd

b (k1, k2) c(k1, ⌘
0) d(k2, ⌘

0), (75)

where  a(k, ⌘0) denotes the initial conditions.
In the following calculations we will be using the value of the ⌦ b

a

matrix to be that of the Einstein de Sitter background that is

e↵ectively assuming that D� scales like D
�3/2
+ . This is known to

be a very good approximation even in the context of a ⇤�CDM
universe.



Diagrammatic representations

ga
b(η,η0)

Ψa
(1)(k, η) = η

Ψb(k, η0)

Figure: Diagrammatic representation of the linear propagator.  b

represents the initial conditions and g b
a is the time dependent propagator.

This diagram value is the linear solution of the motion equation.

gc
e(η', η0)

ϒb
cd

 
η η'

Ψa
(2)(k, η) =

ga
b(η,η')

Ψe(k1, η0)

Ψf(k2, η0) gd
f(η', η0)

Figure: Diagrammatic representation of the fields at second order. This
diagram value is given by eqn (75) when one replaces  c and  d in the
second term of the right hand side by their linear expressions. In the
diagram, each time one encounters a vertex, a time integration and a
Dirac function in the wave modes is implicitly assumed.



Diagrammatic representations

Ψa
(4)(k, η) = +

Figure: Diagrammatic representation of the fields at fourth order. Three
di↵erent diagrams are found to contribute.

One of a nice feature of eqn (75) is that it admits simple
diagrammatic representations in a way very similar to Feynman
diagrams.



A field representation of the nonlinear motion equations

Pab(k, η) = ×ga
c(η-η0) gbd(η-η0)

Plin
cd(k, η0)

Figure: Diagrammatic representation of the power spectrum at linear
order. The symbol ⌦ represents the linear power spectrum in the
(adiabatic) growing mode.



A field representation of the nonlinear motion equations

Relevant statistical quantities are obtained however once ensemble
average are taken. Assuming Gaussian initial conditions, one then
can apply the Wick theorem to all the factors representing the
initial field values that appear in diagrams (or product of diagrams)
of interest. In practice, at least for these notes, the diagrams will
all be computed assuming the initial conditions correspond
e↵ectively to the adiabatic linear growing mode. The simplest of
such diagram is presented on Fig. 11. It corresponds to the
ensemble average of h a(k, ⌘) b(k, ⌘)i and it makes intervene the
linear power spectrum represented by ⌦. The previous construction
can obviously be extended to any number of fields. The next
diagrams will inevitably make intervene loops (in their diagram
representation). One idea we will pursue here is to take advantage
of such expansions to explore the density spectrum at 1-loop order
and 2-loop order, also called at Next-to Leading Order and Next to
Next to Leading Order (respectively NLO and NNLO).



A field representation of the nonlinear motion equations

P1-loopab (k,η) = 2 Ψb
(1)(k)Ψa

(3)(k,q,-q)
q-q

Ψa
(2)(q,k-q) Ψb

(2)(q,k-q)
+

Figure: Diagrammatic representation of the 2 terms contributing to the
power spectrum at one-loop order.

The 2 diagrams contributing to the power spectrum at NLO are
shown on Fig. 12. The first calculation of such contributions were
done in the 90’s.



Scaling of solutions

It is interesting to compute the way subsequent orders in
perturbation theory scale with the linear solution. As the vertices
and the time integrations are both dimensionless operations, one
can easily show that the p�th order expression of the density field
is of the order of the power p of the linear density field. In other

words, there are kernels functions F (n)
a such that

 (p)
a (k, ⌘) =

Z
dk1

(2⇡)3/2
. . .

dkp
(2⇡)3/2

�
Dirac

(k� k1...p)

⇥F (p)
a (k1, . . . , kp; ⌘)�+(k1, ⌘) . . . �+(kp, ⌘)(76)

where �+(ki , ⌘) is the linear growing mode for wave modes ki ,

k1...p = k1 + · · ·+ kp and where F (p)
a (k1, . . . , kp; ⌘) are

dimensionless functions of the wave modes and are a priori time
dependent.



Scaling of solutions

For an Einstein-de Sitter background, the functions

F (p)
a (k1, . . . , kp; ⌘) are actually time independent and in general

depends only very weakly on time (and henceforth on the

cosmological parameters.) The functions F (p)
a are usually noted Fp

and Gp for respectively a = 1 and a = 2. For instance it is easy to
show that

F2(k1, k2) =
5

7
+

1

2

k1 · k2
k21

+
1

2

k1 · k2
k22

+
2

7

(k1 · k2)2

k21 k
2
2

(77)

for an Einstein-de Sitter universe. For an arbitrary background the
coe�cient 5/7 and 2/7 are slightly altered but only very weakly.



Scaling of solutions

It can be noted that this kernel is very general and is actually
directly observable. Indeed for Gaussian initial conditions the first
non-vanishing contribution to the bi-spectrum is obtained when
one, and only one, factor is written at second order in the initial
field,

h�(k1)�(k2)�(k3)ic = h�(1)(k1)�(1)(k2)�(2)(k3)ic + sym. (78)

and it is easy to show that it eventually reads

h�(k1)�(k2)�(k3)ic = �
Dirac

(k1 + k2 + k3)

⇥
h
2F2(k1, k2)P

lin.(k1)P
lin.(k2) + sym.

i
(79)

where sym. refers to 2 extra terms obtained by circular changes of
the indices. The important consequence of this form is that the
bispectrum therefore scales like the square of the power spectrum.



Scaling of solutions

In particular the reduced bispectrum defined as

Q(k1, k2, k3) =
B(k1, k2, k3)

P(k1)P(k2) + P(k2)P(k3) + P(k3)P(k1)
(80)

is expected to have a time independent amplitude at early time.



Scaling of solutions

More generally, the connected p-point correlators at lowest order in
perturbation theory scale like the power p � 1 of the 2-point
correlators: it comes from the fact that in order to connect p
points using the Wick theorem one needs at least p � 1 lines
connecting a product of 2(p � 1) fields taken at linear order. For
instance the local p�order cumulant of the local density contrast
h�pic scales like,

h�pic ⇠ h�2ip�1. (81)

In the last sections of these notes, more detailed presentation of
these relations will be given.



Scaling of solutions

Other consequences of these scaling results concern the p-loop
corrections to the power spectrum. Indeed one expects to have

Pp�loop(k) ⇠ P lin.(k)

Z
dq

q
q3P(q)

�p
. (82)

At least that would be the case if the linear power spectrum
peaked at wave modes about k. This is not necessarily the case. In
the following we explore the mode coupling structure, i.e. how
modes q are contributing to the corrective terms to the power
spectrum depending on whether they are much smaller (infrared
domain) or much larger (ultra-violet domain) than k.


