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These lecture notes introduce analytical tools, methods and results describing the growth

of cosmological structure .

Table des matières

1 Introduction 2

2 The single flow Vlasov-Poisson equation 3

2.1 The Vlasov equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Single flow approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 The curl modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 The linear theory 6

3.1 The linear modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 General solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Modes and statistics 10

4.1 The origin of stochasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2 Statistical homogeneity and isotropy . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3 Moments and cumulants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.4 Moment and cumulant generating functions . . . . . . . . . . . . . . . . . . . . . 14

5 The nonlinear equations 14

5.1 A field representation of the nonlinear motion equations . . . . . . . . . . . . . . 14
5.2 Diagrammatic representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.3 Scaling of solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.4 Time flow equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6 Sonder les grandes structures de l’Univers avec les galaxies 19

6.1 Comment décrire le biais ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
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Observing the LSS of the universe



The CMB sky, temperature and polarization

A linear sky at 10-5 precision



The linear sky
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Figure 1: Top CMB angular power spectra determinations as of mid-2015 (from Planck Collaboration et al. (2015j) and
Calabrese add a true ref for Calabrese). This corresponds to the determination (with S/N> 1) of 1 114 000 modes
measured with TT , 96 000 with EE (60 000 with T E, not shown), and tens of modes in BB (and weak constraints on
T B and EB) . Bottom Lensing potential power spectrum measurement from Planck (Planck Collaboration et al. 2015g),
as well as earlier measurements. The goal for the future is now to measure the million polarisation modes which are still
unknown.
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CMB angular power spectra determinations 
as of mid-2015 (from Planck Collaboration 
et al. 2015 and Calabrese 2016). This 
corresponds to the determination (with S/N > 
1) of 1 114 000 modes measured with TT, 96 
000 with EE (60 000 with TE, not shown), 
and tens of modes in BB (and weak 
constraints on T B and E B) . 

metric fluctuations 
as it emerges from 

inflation
transfer functions: it contains 
the microphysics - Boltzmann 

& GR 

harmonic modes (for 
temperature and 

polarization)

sa`m =

Z
dk sT`m(k) �adiab(k) + . . .

h sa`m sa`0m0i = �``0�mm0 sC`



The development of cosmological 
instabilities across time and scale

Beyond the linear 
regime domain
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- identify relevant observables (power spectra and 
beyond)

- controlled predictions of identified observables 
- controlled predictions of covariances between such 

observables (modes are not independent)  
- theoretical error structure.

A theorist work program

�⇢(~k) =

Z
d3~q T (~k, ~q) �adiab(~q) +

Z
d3~q1d

3~q2 T (~k, ~q1, ~q2) �adiab(~q1)�adiab(~q2) +
...

Modes are now full functionals of the initial modes. At best 
they can expended with respect to initial metric fluctuations

Entering the nonlinear regime 



A self-gravitating 
expanding dust fluid
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The Vlasov equation

So let us start assuming that the universe is full of dust like
particles with the same mass, m.
The first step of the calculation is to introduce the phase space
density function, f (x,p) d3x d3p, which is the number of particles
per volume element d3x d3p where the position x of the particles is
expressed in comoving coordinates and the particle conjugate
momentum p reads

p = uma, (1)

where a is the expansion factor, u is the peculiar velocity, i.e. the
di↵erence of the physical velocity of the Hubble expansion.



The Vlasov equation

Then the conservation of the particles together with the Liouville
theorem when the the two-body interactions can be neglected
implies that the total time derivative of f vanishes so that

df

dt
=

@

@t
f (x,p, t) +

dx

dt

@

@x
f (x,p, t) +

dp

dt

@

@p
f (x,p, t) = 0. (2)

This is the Vlasov equation.



The Vlasov equation

The time variation of the position can be expressed in terms of p
and one gets

dx

dt
=

p

ma2
. (3)

The time variation of the momentum in general can be obtained
from the geodesic equation. Assuming the metric perturbations are
small and for scales much below the Hubble scale we have

dp

dt
= �mr

x

�(x, t) (4)

where � is the potential. We recall that in the context of metric
perturbation in an expanding universe the potential �(x) is sourced
by the density contrast (of all species). In our context we simply
have

��(x) =
4⇡Gm

a

✓Z
f (x,p, t)d3p� n

◆
(5)

where n is the spatial average of
R
f (x,p, t)d3p.



The Vlasov equation

We then have

@

@t
f (x,p, t)+

p

ma2
@

@x
f (x,p, t)�mr

x

�(x, t)
@

@p
f (x,p, t) = 0. (6)

The system (6, 5) forms the Vlasov-Poisson equation. This is
precisely the set of equations the N-body simulations attempt to
solve.



The motion equations

We can now derive the basic conservation equations we are going
to use from the first 2 moments of the Vlasov equation. Let us
define the density field per volume d3r as

⇢(x, t) =
m

a3

Z
d3p f (x,p). (7)

It can be decomposed in an homogeneous form and an
inhomogeneous form,

⇢(x, t) = ⇢(t)(1 + �(x, t)). (8)

Note that ⇢(t) the spatial averaged of ⇢(x, t) should behave like
a(t)�3 for non relativistic species.



The motion equations

One should then define the higher order moment of the phase
space distribution: the mean velocity flow is defined as (for each
component),

ui (x, t) =
1R

d3p f (x,p, t)

Z
d3p

pi
ma

f (x,p, t), (9)

and the second moment defines the velocity dispersion �ij(x, t),

ui (x, t)uj(x, t)+�ij(x, t) =
1R

d3p f (x,p, t)

Z
d3p

pi
ma

pj
ma

f (x,p, t).

(10)



The motion equations

The first two moments of the Vlasov equation give then the
conservation and Euler equations, respectively

@�(x, t)

@t
+

1

a
[(1 + �(x, t))ui (x, t)],i = 0 (11)

and

@ui (x, t)

@t
+

ȧ

a
ui (x, t) +

1

a
uj(x, t)ui (x, t),j =

�1

a
�(x, t),i �

(⇢(x, t)�ij(x, t)),j
⇢(x, t) a

. (12)

The first term of the right hand side of eqn (12) is the
gravitational force, the second is due to the pressure force which in
general can be anisotropic. In the context we are interested in, it
actually vanishes until the formation of the first caustics.



Single flow approximation

The early stages of the gravitational instabilities are indeed
characterized, assuming the matter is non-relativistic, by a
negligible velocity dispersion when it is compared to the velocity
flows, i.e. much smaller than the velocity gradients induced by the
density fluctuations of the scales of interest. This is the single flow
approximation. It simply states that one can assume

f (x,p, t) =
a3 ⇢(x, t)

m
�(3)[p�ma u(x, t)], (13)

to a good approximation. This approximation will naturally break
at the time of shell crossings when di↵erent flows – pulled toward
one-another by gravity – cross. The Vlasov-Poisson equation in the
single flow regime is the system that will be studied throughout
these lecture notes, from linear to non nonlinear regime.



Single flow approximation
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One flow 
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region leading 
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Figure: Schematic description of phase space after the first shell crossings
and emergence of multi-flow regions. The figure is for 1D dynamics.
From left to right, one can see regions with growing number of flows
after dark matter caustic crossings.



The curl modes

In the single flow regime, one can note that the source term of the
Euler equation is potential, implying that it cannot generate any
curl mode in the velocity field. More precisely, one can decompose
any three-dimensional field in a gradient part and a curl part

ui (x) =  (x),i +wi (x) (14)

where wi ,i = 0. Defining the local vorticity as

!k(x) = ✏ijkui ,j(x) (15)

where ✏ijk is the totally anti-symmetric Levi-Civita tensor one can
easily show that

!k(x) = ✏ijkwi ,j(x). (16)



The curl modes

And applying the operator ✏ijkrj to the Euler equation one gets
(see [?])

@

@t
!k +

ȧ

a
!k � ✏ijk✏lmi (ul !m),j = 0. (17)

This equation actually expresses the fact that the vorticity is
conserved throughout the expansion. In the linear regime that is
when the last term of this equation is dropped it simply means
that the vorticity scales like 1/a. In the subsequent stage of the
dynamics the vorticity can only grow in contracting regions but it
is still somehow conserved, it cannot be created out of potential
modes only. That will be the case until shell crossing where the
anisotropic velocity dispersion can then induce vorticity. This has
been explicitly demonstrated in various studies [?, ?, ?]. As a
consequence, in the following, curl modes in the vector flied will
always be neglected.



The linear theory

We now proceed to explore the linear regime of the Vlasov-Poisson
system. One objective is to make contact with earlier stages of the
gravitational dynamics and the second is to introduce the notion of
Green function we will use in the following.



The linear modes

The linearization of the motion equation is obtained when one
assumes that the terms [�(x, t))ui (x, t)],i and uj(x, t)ui (x, t),j in
respectively the continuity and the Euler equation vanish. This is
obtained when both the density contrast and the velocity gradients
in units of H are negligible. The linearized system is obtained in
terms of the velocity divergence

✓(x, t) =
1

aH
ui ,i (18)

so that the system now reads

@

@t
�(x, t) + H✓(x, t) = 0 (19)

@

@t
✓(x, t) + 2H✓ +

Ḣ

H
✓(x, t) = �3

2
H⌦m(t)�(x, t) (20)

after taking the divergence of the Euler equation. We have
introduced here the Hubble parameter H = ȧ/a and used the
Friedman equation H2 = 8⇡/3 G⇢c(t) together with the definition
of ⌦m = ⇢(t)/⇢c(t).



The linear modes

The resolution of this system is now simple. It can be obtained
after eliminating the velocity divergence and one gets a second
order dynamical equation,

@2

@ t2
�(x, t) + 2H

@

@ t
�(x, t)� 3

2
H2⌦m �(x, t) = 0, (21)

for the density contrast. It is to be noted that the spatial
coordinates are here just labels: there is no operator acting of the
physical coordinates. This is quite a unique feature in the growth
of instabilities in a pressureless fluid. That implies in particular
that the linear growth rate of the fluctuations will be independent
on scale. The time dependence of the linear solution is given by
the two solutions of

D̈ + 2H Ḋ � 3

2
H2⌦m D = 0, (22)

one of which is decaying and the other is growing with time.



The linear modes, Einstein de Sitter case

For an Einstein de-Sitter (EdS) background (a universe with no
curvature and with a critical matter density) the solutions read

DEdS

+ (t) / t2/3, DEdS

� (t) / 1/t, (23)

that is DEdS

+ (t) is proportional to the expansion factor. This result
gives the time scale of the growth of structure. This is what
permits a direct comparison between the amplitude of the metric
perturbations at recombination and the density perturbation in the
local universe. Note that it implies that the potential, for the
corresponding mode, is constant (see the Poisson equation).



The linear modes, general solutions

Il n’existe pas de solution générale à (22) qui soit valable pour tout
modèle cosmologique. Cependant si on admet que le contenu de
l’univers à bas redshift correspond à un mélange de matière, d’une
énergie du vide correspondant à une simple constante
cosmologique, en présence éventuellement d’un terme de courbure,
alors la constante de Hubble prend la forme,

H = H0

q
⌦(0)
m

a�3 + (1� ⌦(0)
m

� ⌦(0)
˜

)a�2 + ⌦⇤, (24)

et est solution de (22). C’est la solution décroissante. La solution
croissante peut facilement être obtenue par méthode de variation
des constantes. On obtient ainsi, sous les hypothèses mentionnées
plus haut,

D�(t) / H(t), (25)

D+(t) / H(t)

Z
dt

(aH)2
. (26)



The linear theory
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Figure: Comportement des taux de croissance (lignes épaisses) et de
décroissance (lignes fines) des instabilités gravitationnelles pour un
univers Einstein-de Sitter (lignes continues), un univers avec
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The linear theory

Si on se restreint à des cosmologies sans constante cosmologique,
⌦⇤ = 0, D+ peut s’exprimer analytiquement en fonction de a,

D+(a) / 1 +
3⌦(0)

m

a� a⌦(0)
m

+ 3

vuut(a(⌦(0)
m

� 1)� ⌦(0)
m

)⌦(0)
m

2

a3(⌦(0)
m

� 1)3

⇥ log

0

@

vuuta

 
1

⌦(0)
m

� 1

!
+ 1�

vuuta

 
1

⌦(0)
m

� 1

!1

A



The linear theory

Pour un contenu en énergie matière arbitraire, il faut résoudre bien
sûr l’équation (22). Les résultats d’une telle intégration sont
montrés sur la figure 2. Une forme plus simple existe cependant
dans le cas d’univers plat avec constante cosmologique. Dans ce
cas la dépendance temporelle de D+ est donnée par

D+(t) = 2F1

✓
1,

1

3
;
11

6
;� sinh2

✓
3↵t

2

◆◆
sinh

2
3

✓
3↵t

2

◆
, (27)

et le facteur f prend la forme

f = 1� 6

11
2F1

�
2, 43 ;

17
6 ;� sinh2

�
3↵t
2

��
sinh2

�
3↵t
2

�

2F1
�
1, 13 ;

11
6 ;� sinh2

�
3↵t
2

�� (28)

avec ↵ =
p
⇤/3.



La relation densité-vitesse

Pour être complet, il faut bien sûr expliciter la relation entre le
contraste de densité et la divergence du champ de vitesse.
L’équation de continuité peut se réécrire,

a
@

@a
� + ✓ = 0. (29)

Le champ ✓ s’écrit donc,

✓(t, x) =
@ logD+

@ log a
�+(t, x) +

@ logD�
@ log a

��(t, x) (30)

où �±(t, x) = D±(t)�±(x). Pour un univers Einstein-de Sitter,
cette relation devient

✓(t, x) = �+(t, x)�
3

2
��(t, x). (31)



La relation densité-vitesse

Poursuivons l’examen de la relation densité-vitesse. Si on se limite
au terme croissant le facteur de proportionnalité entre ✓ et � est
donc la dérivée logarithmique de D+ avec le facteur d’expansion,

f ⌘ d logD+

d log a
. (34)

Ce facteur vaut 1 pour un univers Einstein de Sitter. On peut bien
sûr le calculer analytiquement ou numériquement selon les cas. Par
exemple pour un univers plat avec constante cosmologique une
bonne paramétrisation de f est,

f (⌦
m

) = ⌦5/9 ⇡ ⌦0.55; (35)

et pour un univers sans constante cosmologique,

f (⌦
m

) = ⌦3/5. (36)

La figure (4) compare les résultats exacts à ces formes approchées.
On voit que l’écart est tout au plus de quelques pour-cents.



La relation densité-vitesse
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Figure: Facteur f , équation (34), divisé par sa valeur estimée, équations
(35-36), en fonction de ⌦m pour un espace sans constante cosmologique
(ligne continue) ou pour un espace plat (tirets).



Linear theory: the Green functions

The previous results show that the linear density field can be
written in general

�(x, t) = �+(x)D+(t) + ��(x)D�(t) (37)

and

✓(x, t) = � d

d log a
D+ �+(x)�

d

d log a
D���(x). (38)

The actual growing and decaying modes can then be obtained by
inverting this system. For instance for an Einstein de Sitter
background one gets

�+(x)D+(t) =
D+(t)

D+(t0)


3

5
�(x, t0)�

2

5
✓(x, t0)

�
, (39)

��(x)D�(t) =
D�(t)

D�(t0)


2

5
�(x, t0) +

2

5
✓(x, t0)

�
, (40)

and similar results for the velocity divergence.



Linear theory: the Green functions

Following [?], this result can be encapsulated in a simple form after
one introduces the doublet  a(k, ⌧),

 a(k, ⌧) ⌘
⇣
�(x, t), �✓(x, t)

⌘
, (41)

where a is an index whose value is either 1 (for the density
component) or 2 (for the velocity component).



Linear theory: the Green functions

The linear growth solution can now be written

 a(x, t) = g b
a (t, t0) b(x, t0) (42)

where gb
a is the Green function of the system. It is usually written

with the following time variable,

⌘ = logD+ (43)

(not to be mistaken with the conformal time). For an Einstein de
Sitter universe, we have explicitly,

g b
a (⌘, ⌘0) =

e⌘�⌘0

5


3 2
3 2

�
+

e�
3
2 (⌘�⌘0)

5


2 �2
�3 3

�
. (44)

We will see in the following that, provided the doublet  a is
properly defined, this form remains practically unchanged for any
background.



Linear theory: The general background case

For a general background, it is fruitful to extent the definition of
the doublet to,

 a(x, ⌘) ⌘
⇣
�(x, ⌘), � 1

f+
✓(x, ⌘)

⌘
, (45)

where

f+ =
d logD+

d log a
(46)

Defining ✓̂ = �✓(x, ⌘)/f+ and for the time variable ⌘, the
linearized motion equations indeed read

@

@⌘
�(x, ⌘)� ✓̂(x, ⌘) = 0 (47)

@

@⌘
✓̂(x, ⌘)

✓
3

2

⌦m

f 2+
� 1

◆
✓̂ � 3

2

⌦m

f 2+
�(x, ⌘) = 0, (48)



Cosmic fields as 
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The origin of stochasticity
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Figure: Development of linear metric perturbation across scale and time.



The origin of stochasticity

In models of inflation the stochastic properties of the fields
originate from quantum fluctuations of a scalar field, the inflaton.
This field has quantum fluctuations that can be decomposed in
Fourier modes using the creation and annihilation operators a†

k

and
a
k

for a wave mode k,

�' =

Z
d3k

h
a
k

 k(t) exp(ik.x) + a†
k

 ⇤
k(t) exp(�ik.x)

i
. (55)

The operators obey the standard commutation relation,

[a
k

, a†�k

0 ] = �D(k+ k

0), (56)

and the mode functions  k(t) are obtained from the Klein-Gordon
equation for ' in an expanding Universe.



The origin of stochasticity

We give here its expression for a de-Sitter metric (i.e. when the
spatial sections are flat and H is constant),

 k(t) =
H

(2 k)1/2 k

✓
i+

k

aH

◆
exp


i k

aH

�
, (57)

where a and H are respectively the expansion factor and the
Hubble constant that are determined by the overall content of the
Universe through the Friedmann equations.
When the modes exit the Hubble radius, k/(aH) ⌧ 1, one can see
from eqn (57) that the dominant mode reads,

'
k

⇡ iHp
2k3/2

⇣
a
k

+ a†�k

⌘
, �' =

Z
d3k'

k

e i k.x. (58)

Therefore these modes are all proportional to a
k

+ a†�k

.



The origin of stochasticity

One important consequence of this is that the quantum nature of
the fluctuations has disappeared [?, ?]: any combinations of '

k

commute with each other. The field ' can then be seen as a
classic stochastic field where ensemble averages identify with
vacuum expectation values,

h...i ⌘ h0|...|0i. (59)



The origin of stochasticity

After the inflationary phase the modes re-enter the Hubble radius.
They leave imprints of their energy fluctuations in the gravitational
potential, the statistical properties of which can therefore be
deduced from eqns (56, 58). All subsequent stochasticity that
appears in the cosmic fields can thus be expressed in terms of the
random variable '

k

. The linear theory calculation precisely tells us
how each mode, in each fluid component, grows across time, i.e. it
provides us with the so-called transfer functions, Ta(k, ⌘, ⌘0),
defined as

�a(k, ⌘) = Ta(k, ⌘, ⌘0)�'(k, ⌘0) (60)

where ⌘0 is a time which corresponds to an arbitrarily early time.



Statistical homogeneity and isotropy

In the following the density contrast will be decomposed in Fourier
modes that, for a flat universe, are defined such as

�(x) =

Z
d3k

(2⇡)3/2
�(k) exp(ik · x) (61)

or equivalently

�(k) =

Z
d3x

(2⇡)3/2
�(x) exp(�ik · x). (62)

The observable quantities of interest are actually the statistical
properties of such a field, whether it is represented in real space or
in Fourier space.



Statistical homogeneity and isotropy

The Cosmological Principle, e.g. that the assumption that the
Universe is statically isotropic and homogeneous, implies that real
space correlators are homogeneous and isotropic which for instance
implies that

⌦
�(x)�(x+ r)

↵
is a function of the separation r only.

This defines the two-point correlation function,

⇠(r) =
⌦
�(x)�(x+ r)

↵
. (63)

In Fourier space, the two point correlator of the Fourier modes
then takes the form,

⌦
�(k)�(k0)

↵
=

Z
d3x

(2⇡)3/2
d3r

(2⇡)3/2
⇠(r) exp[�i(k+ k

0) · x� ik0 · r]

= �
Dirac

(k+ k

0)

Z
d3r ⇠(r) exp(ik · r)

⌘ �
Dirac

(k+ k

0)P(k), (64)

where P(k) is the power spectrum of the density field, e.g. the
cross-correlation matrix is symmetric in Fourier space.



��k�k�⇥ = �Dirac(k + k�) P (k)

Power spectrum



Statistical homogeneity and isotropy

All these relations apply to the observed fields. However in case of
the primordial fluctuations, the field �'(k) corresponds to a free
field from a quantum mechanical point of view. That makes it
eventually a Gaussian classical field. As such it obeys the Wick
theorem. The latter tells us that higher order correlators can then
be entirely constructed from the power spectrum (from pair
associations) through the relations,

⌦
�'(k1) . . . �'(k2p+1)

↵
= 0 (65)

⌦
�'(k1) . . . �'(k2p)

↵
=

X

pair associations

Y

p pairs (i,j)

⌦
�'(ki )�'(kj)

↵
.

These relations apply as well to any linear combinations of the
primordial field, and therefore to any field computed in the linear
regime.



Moments and cumulants

In the nonlinear regime however, fields also exhibit higher order
non-trivial correlation functions that cannot be reconstructed from
the two-point order correlators. They are defined as the connected
part (denoted with subscript c) of the joint ensemble average of
fields in an arbitrarily number of locations. Formally, for the
density field, it reads,

h�(x1), . . . , �(xN)i = h�(x1), . . . , �(xN)ic
+

X

S2P({x1,...,xn})

Y

si2S
h�(xsi (1)), . . . , �(xsi (#si ))ic , (66)

where the sum is made over the proper partitions (any partition
except the set itself) of {x1, . . . , xN} and si is thus a subset of
{x1, . . . , xN} contained in partition S. When the average of �(x) is
defined as zero, only partitions that contain no singlets contribute.



Moments and cumulants
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Figure: Representation of the connected part of the moments.
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Figure: Writing of the three-point moment in terms of connected parts.



Moments and cumulants

The decomposition in connected and non-connected parts can be
easily visualized. It means that any ensemble average can be
decomposed in a product of connected parts. They are defined for
instance in Fig. 6. The tree-point moment is “written” in Fig. 7.
Because of homogeneity of space h�(k1) . . . �(kN)ic is always
proportional to �D(k1 + · · ·+ kN). Then we can define
PN(k1, . . . , kN) with

h�(k1) . . . �(kN)ic = �D(k1 + · · ·+ kN)PN(k1, . . . , kN). (67)

One case of particular interest is for n = 3, the bispectrum, which
is usually denoted by B(k1, k2, k3). Note that it depends on 2
wave modes only, and it depends on 3 independent variables
characterizing the triangle formed by the 3 wave modes (for
instance 2 lengths and 1 angle).



Moment and cumulant generating functions

It is convenient to define a function from which all moments can
be generated, namely the moment generating function. It can be
defined2 for any number of random variables. Here we give its
definition for the local density field. It is defined by

M(t) ⌘
1X

p=0

h⇢pi
p!

tp = hexp(t�)i. (68)

The moments can obviously obtained by subsequent derivatives of
this function at the origin t = 0. A cumulant generating function
can similarly be defined by

C(t) ⌘
1X

p=2

h⇢pic
p!

tp. (69)

2
It is to be noted however that the existence of moments – which itself is

not guaranteed for any stochastic process – does not ensure the existence of

their generating function as the series defined in (68) can have a vanishing

converging radius. Such a case is encountered for a lognormal distribution for

instance and it implies that the moments of such a stochastic process do not

uniquely define the probability distribution function.



Moment and cumulant generating functions

A fundamental result is that the cumulant generating function is
given by the logarithm of the moment generation function

M(t) = exp[C(t)]. (70)

In case of a Gaussian probability distribution function, this is
straightforward to check since hexp(t�)i = exp(�2t2/2).
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Linear theory: The general background case

For a general background, the doublet is defined as,

 a(x, ⌘) ⌘
⇣
�(x, ⌘), � 1

f+
✓(x, ⌘)

⌘
, (45)

where

f+ =
d logD+

d log a
(46)

Defining ✓̂ = �✓(x, ⌘)/f+ and for the time variable ⌘ = logD+, the
linearized motion equations indeed read

@

@⌘
�(x, ⌘) � ✓̂(x, ⌘) = 0 (47)

@

@⌘
✓̂(x, ⌘) +

✓
3

2

⌦m

f 2+
� 1

◆
✓̂ � 3

2

⌦m

f 2+
�(x, ⌘) = 0, (48)



Linear theory: The general background case

It can be rewritten as

@

@⌘
 a(x, ⌘) + ⌦

b
a (⌘) b(x, ⌘) = 0, (49)

with

⌦ b
a (⌘) =

 
0 �1

�3
2
⌦m
f 2+

3
2
⌦m
f 2+

� 1

!
. (50)



A field representation of the nonlinear motion equations

Inserting the non-linear terms one eventually gets,

@

@⌘
 

a

(k, ⌘) + ⌦ b

a

(⌘) 
b

(k, ⌘) = � bc

a

(k1, k2)  
b

(k1, ⌘)  c

(k2, ⌘),

(73)

where ⌦ b

a

(⌘) is defined in eqn (50) and where (and that will be
the case henceforth) we use the convention that repeated Fourier
arguments are integrated over and the Einstein convention on
repeated indices, and where the symmetrized vertex matrix � bc

a

describes the non linear interactions between di↵erent Fourier
modes.



A field representation of the nonlinear motion equations

The components of � bc
a are given by

� 22
2 (k1, k2) = �

Dirac

(k� k1 � k2)
|k1 + k2|2(k1 · k2)

2k21k
2
2

,

� 21
1 (k1, k2) = �

Dirac

(k� k1 � k2)
(k1 + k2) · k1

2k21
, (74)

� bc
a (k1, k2) = � cb

a (k2, k1), and � = 0 otherwise, where �
Dirac

denotes the Dirac distribution function. The matrix � bc
a is

independent on time (and on the background evolution) and
encodes all the non-linear couplings of the system.



A field representation of the nonlinear motion equations

One can then take advantage of the knowledge of the Green
function of this system to write a formal solution of eqn (73) as

 a(k, ⌘) = g b
a (⌘)  b(k, ⌘0) +

+

Z ⌘

⌘0

d⌘0 g b
a (⌘, ⌘0) � cd

b (k1, k2) c(k1, ⌘
0) d(k2, ⌘

0), (75)

where  a(k, ⌘0) denotes the initial conditions.
In the following calculations we will be using the value of the ⌦ b

a

matrix to be that of the Einstein de Sitter background that is

e↵ectively assuming that D� scales like D
�3/2
+ . This is known to

be a very good approximation even in the context of a ⇤�CDM
universe.



Diagrammatic representations

ga
b(η,η0)

Ψa
(1)(k, η) = η

Ψb(k, η0)

Figure: Diagrammatic representation of the linear propagator.  b

represents the initial conditions and g b
a is the time dependent propagator.

This diagram value is the linear solution of the motion equation.

gc
e(η', η0)

ϒb
cd

 
η η'

Ψa
(2)(k, η) =

ga
b(η,η')

Ψe(k1, η0)

Ψf(k2, η0) gd
f(η', η0)

Figure: Diagrammatic representation of the fields at second order. This
diagram value is given by eqn (75) when one replaces  c and  d in the
second term of the right hand side by their linear expressions. In the
diagram, each time one encounters a vertex, a time integration and a
Dirac function in the wave modes is implicitly assumed.



Diagrammatic representations

Ψa
(4)(k, η) = +

Figure: Diagrammatic representation of the fields at fourth order. Three
di↵erent diagrams are found to contribute.

One of a nice feature of eqn (75) is that it admits simple
diagrammatic representations in a way very similar to Feynman
diagrams.



A field representation of the nonlinear motion equations

Pab(k, η) = ×ga
c(η-η0) gbd(η-η0)

Plin
cd(k, η0)

Figure: Diagrammatic representation of the power spectrum at linear
order. The symbol ⌦ represents the linear power spectrum in the
(adiabatic) growing mode.



A field representation of the nonlinear motion equations

Relevant statistical quantities are obtained however once ensemble
average are taken. Assuming Gaussian initial conditions, one then
can apply the Wick theorem to all the factors representing the
initial field values that appear in diagrams (or product of diagrams)
of interest. In practice, at least for these notes, the diagrams will
all be computed assuming the initial conditions correspond
e↵ectively to the adiabatic linear growing mode. The simplest of
such diagram is presented on Fig. 11. It corresponds to the
ensemble average of h a(k, ⌘) b(k, ⌘)i and it makes intervene the
linear power spectrum represented by ⌦. The previous construction
can obviously be extended to any number of fields. The next
diagrams will inevitably make intervene loops (in their diagram
representation). One idea we will pursue here is to take advantage
of such expansions to explore the density spectrum at 1-loop order
and 2-loop order, also called at Next-to Leading Order and Next to
Next to Leading Order (respectively NLO and NNLO).



A field representation of the nonlinear motion equations

P1-loopab (k,η) = 2 Ψb
(1)(k)Ψa

(3)(k,q,-q)
q-q

Ψa
(2)(q,k-q) Ψb

(2)(q,k-q)
+

Figure: Diagrammatic representation of the 2 terms contributing to the
power spectrum at one-loop order.

The 2 diagrams contributing to the power spectrum at NLO are
shown on Fig. 12. The first calculation of such contributions were
done in the 90’s.



Scaling of solutions

It is interesting to compute the way subsequent orders in
perturbation theory scale with the linear solution. As the vertices
and the time integrations are both dimensionless operations, one
can easily show that the p�th order expression of the density field
is of the order of the power p of the linear density field. In other

words, there are kernels functions F (n)
a such that

 (p)
a (k, ⌘) =

Z
dk1

(2⇡)3/2
. . .

dkp
(2⇡)3/2

�
Dirac

(k� k1...p)

⇥F (p)
a (k1, . . . , kp; ⌘)�+(k1, ⌘) . . . �+(kp, ⌘)(76)

where �+(ki , ⌘) is the linear growing mode for wave modes ki ,

k1...p = k1 + · · ·+ kp and where F (p)
a (k1, . . . , kp; ⌘) are

dimensionless functions of the wave modes and are a priori time
dependent.



Scaling of solutions

For an Einstein-de Sitter background, the functions

F (p)
a (k1, . . . , kp; ⌘) are actually time independent and in general

depends only very weakly on time (and henceforth on the

cosmological parameters.) The functions F (p)
a are usually noted Fp

and Gp for respectively a = 1 and a = 2. For instance it is easy to
show that

F2(k1, k2) =
5

7
+

1

2

k1 · k2
k21

+
1

2

k1 · k2
k22

+
2

7

(k1 · k2)2

k21 k
2
2

(77)

for an Einstein-de Sitter universe. For an arbitrary background the
coe�cient 5/7 and 2/7 are slightly altered but only very weakly.



Scaling of solutions

It can be noted that this kernel is very general and is actually
directly observable. Indeed for Gaussian initial conditions the first
non-vanishing contribution to the bi-spectrum is obtained when
one, and only one, factor is written at second order in the initial
field,

h�(k1)�(k2)�(k3)ic = h�(1)(k1)�(1)(k2)�(2)(k3)ic + sym. (78)

and it is easy to show that it eventually reads

h�(k1)�(k2)�(k3)ic = �
Dirac

(k1 + k2 + k3)

⇥
h
2F2(k1, k2)P

lin.(k1)P
lin.(k2) + sym.

i
(79)

where sym. refers to 2 extra terms obtained by circular changes of
the indices. The important consequence of this form is that the
bispectrum therefore scales like the square of the power spectrum.



Scaling of solutions

In particular the reduced bispectrum defined as

Q(k1, k2, k3) =
B(k1, k2, k3)

P(k1)P(k2) + P(k2)P(k3) + P(k3)P(k1)
(80)

is expected to have a time independent amplitude at early time.



Scaling of solutions

More generally, the connected p-point correlators at lowest order in
perturbation theory scale like the power p � 1 of the 2-point
correlators: it comes from the fact that in order to connect p
points using the Wick theorem one needs at least p � 1 lines
connecting a product of 2(p � 1) fields taken at linear order. For
instance the local p�order cumulant of the local density contrast
h�pic scales like,

h�pic ⇠ h�2ip�1. (81)

In the last sections of these notes, more detailed presentation of
these relations will be given.



Scaling of solutions

Other consequences of these scaling results concern the p-loop
corrections to the power spectrum. Indeed one expects to have

Pp�loop(k) ⇠ P lin.(k)

Z
dq

q
q3P(q)

�p
. (82)

At least that would be the case if the linear power spectrum
peaked at wave modes about k. This is not necessarily the case. In
the following we explore the mode coupling structure, i.e. how
modes q are contributing to the corrective terms to the power
spectrum depending on whether they are much smaller (infrared
domain) or much larger (ultra-violet domain) than k.



Time flow equations

Although in this presentation we will focus on the diagrammatic
representation of the motion equations, and their integral form,
there exists an alternative set of di↵erential equations that gives
the time dependence of the multi-point spectra. These equations
form a hierarchy and we will give here the first two. The evolution
equation (73) indeed allows to compute the time derivative of
products such as  a(k, ⌘) b(k0, ⌘) or  a(k1, ⌘) b(k2, ⌘) c(k3, ⌘).



Time flow equations

After taking their ensemble averages, it leads respectively to the
following equations,

@

@⌘
Pab(k, ⌘) + ⌦ c

a (k , ⌘)Pcb(k, ⌘) + (a $ b) = (83)

+

Z
d3q

⇥
� cd
a (�q,q� k)Bbcd(k, �q, q� k; ⌘) + (a $ b)

⇤
,

and

@

@⌘
Babc(k, �q, q� k; ⌘)

+⌦ d
a (k , ⌘)Bdbc(k, �q, q� k; ⌘) + (a $ b, c) = (84)

2
⇥
� de
a (�q,q� k)Pdb(q , ⌘)Pec(k� q, ⌘) + (a $ b, c)

⇤
,

where in the latter equation the connected parts of the four-point
correlators have been dropped.



LSS at NLO and 
NNLO
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- The system is not invariant over time translation: it is actually an unstable (non-
equilibrium) system, where perturbations grow with time (as ~ power-law). The late 
time behavior is not known.

- Loop corrections are not due to virtual particle productions but to mode couplings 
effects, modes being set in the initial conditions.

- Vertices have a non-trivial k-dependence but which is entirely due to the 
conservation equation and is independent of the energy content of the universe. Only 
2 →1 vertices exist (quadratic couplings). This is not the case generically for modified 
gravity models (like f(R), ...)

- Due to the shape of CDM spectrum, there are no strict UV divergences (nor IR). 
Loops are all finite (no need for ”renormalization” per se) although UV contributions 
are not well controlled. 

‣   Not a quantum field theory problem...

‣   More closely related to hydrodynamical turbulence



A symmetry: the extended Galilean invariance

Also known in the context of the Navier-Stokes equations for an 
incompressible fluid (Pope 2000)

More explicitly the motion equations are invariant under the 
following transformations,

The argument of the exponential is the time integral of the velocity projected along the
direction k, i.e. the displacement component along k, that is

⇠ b

a

(k, ⌘, ⌘0) = g b

a

(⌘, ⌘
0

) exp (ik · d(⌘, ⌘0)) . (100)

where d(⌘, ⌘0) is the total displacement induced by the long wave modes between time ⌘0 and
⌘. Note that eqn (99) is valid irrespectively of the fact that the incoming modes in ⌅ are in the
growing mode or not.

The consequences of this result are multifold. In particular it explicitly gives the impact of
the long-wave modes on the growth of structure: they are entirely captured by a phase shift in
the propagator values which is proportional to k.d(⌘, ⌘0). If one now considers any contribution
to any equal time multi-point spectrum, it is easy to see that the total phase shifts exactly cancel
out such that the long wave modes have no impact on the equal time correlators. It generalizes
to any order the result of the previous paragraph (see detailed derivation of this property in
Bernardeau et al. 2012; Blas et al. 2013).

The second consequence is that it is now possible to compute resumed propagators. This is
at the heart of the so-called RPT and RegPT propositions described in the next section.

6.3 The extended Galilean invariance

The previous result is actually closely related to the sometimes called the extended Galilean
invariance of the motion equations in the context of the Navier-Stokes equations with constant
density (Pope 2000) enjoyed also by the pressure-less Vlasov-Poisson system5 (Kehagias and
Riotto 2013; Peloso and Pietroni 2013; Creminelli et al. 2013). More explicitly the motion
equations are invariant under the following transformations6,

x
i

! x
i

� s
i

(⌘), u
i

! u
i

+
d

d⌘
s

i

(⌘), (101)

where g(⌘) is an arbitrary time dependent vector. Under this transformation the linear propa-
gator of the theory is precisely changed into,

g b

a

(⌘, ⌘0) ! g b

a

(⌘, ⌘0) exp (ik.[s(⌘) � s(⌘0)]) , (102)

which is reminiscent of eqn (100). In other words the adiabatic long wave modes can entirely be
absorbed by an extended Galilean transformation leaving no imprint on equal time correlators.

Interestingly though, the existence of a transformation under which the equations are invari-
ant leads to so-called Ward identities the simplest of which we reproduce here,

lim
q!0

B(q,k, �k � q; ⌘, ⌘0, ⌘00) =

�q.k

q2

P lin.(q; ⌘, ⌘) P lin.(k; ⌘0, ⌘00)
⇣
e⌘

0�⌘ � e⌘

00�⌘

⌘
(103)

5The origin of this invariance is in the context of large-scale structure dynamics is deeply rooted in the
equivalence principle as shown in Creminelli et al. (2013) and significantly extends that of a mere Galilean
invariance as it states that the development of the gravitational instabilities in a given patch of the universe is
the same irrespectively of the fact that this patch is accelerated or not.

6To get a fully valid transformation one should also change the gravitational potential gradient in such a way

that the source term of the Euler equation is changed in fi ! fi +
d2

d⌘2 si(⌘) +
1
2

d
d⌘ si(⌘) which leaves the Poisson

equation unchanged.
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The argument of the exponential is the time integral of the velocity projected along the
direction k, i.e. the displacement component along k, that is
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the long-wave modes on the growth of structure: they are entirely captured by a phase shift in
the propagator values which is proportional to k.d(⌘, ⌘0). If one now considers any contribution
to any equal time multi-point spectrum, it is easy to see that the total phase shifts exactly cancel
out such that the long wave modes have no impact on the equal time correlators. It generalizes
to any order the result of the previous paragraph (see detailed derivation of this property in
Bernardeau et al. 2012; Blas et al. 2013).

The second consequence is that it is now possible to compute resumed propagators. This is
at the heart of the so-called RPT and RegPT propositions described in the next section.
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invariance of the motion equations in the context of the Navier-Stokes equations with constant
density (Pope 2000) enjoyed also by the pressure-less Vlasov-Poisson system5 (Kehagias and
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where s(⌘) is an arbitrary time dependent vector. Under this transformation the linear propa-
gator of the theory is precisely changed into,
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(⌘, ⌘0) exp (ik.[s(⌘) � s(⌘0)]) , (102)

which is reminiscent of eqn (100). In other words the adiabatic long wave modes can entirely be
absorbed by an extended Galilean transformation leaving no imprint on equal time correlators.

Interestingly though, the existence of a transformation under which the equations are invari-
ant leads to so-called Ward identities the simplest of which we reproduce here,
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5The origin of this invariance is in the context of large-scale structure dynamics is deeply rooted in the
equivalence principle as shown in Creminelli et al. (2013) and significantly extends that of a mere Galilean
invariance as it states that the development of the gravitational instabilities in a given patch of the universe is
the same irrespectively of the fact that this patch is accelerated or not.

6To get a fully valid transformation one should also change the gravitational potential gradient in such a way

that the source term of the Euler equation is changed in fi ! fi +
d2

d⌘2 si(⌘) +
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2

d
d⌘ si(⌘) which leaves the Poisson

equation unchanged.
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then motion equations are unchanged and propagator becomes,

The argument of the exponential is the time integral of the velocity projected along the
direction k, i.e. the displacement component along k, that is
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where d(⌘, ⌘0) is the total displacement induced by the long wave modes between time ⌘0 and
⌘. Note that eqn (99) is valid irrespectively of the fact that the incoming modes in ⌅ are in the
growing mode or not.

The consequences of this result are multifold. In particular it explicitly gives the impact of
the long-wave modes on the growth of structure: they are entirely captured by a phase shift in
the propagator values which is proportional to k.d(⌘, ⌘0). If one now considers any contribution
to any equal time multi-point spectrum, it is easy to see that the total phase shifts exactly cancel
out such that the long wave modes have no impact on the equal time correlators. It generalizes
to any order the result of the previous paragraph (see detailed derivation of this property in
Bernardeau et al. 2012; Blas et al. 2013).

The second consequence is that it is now possible to compute resumed propagators. This is
at the heart of the so-called RPT and RegPT propositions described in the next section.
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where s(⌘) is an arbitrary time dependent vector. Under this transformation the linear propa-
gator of the theory is precisely changed into,
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(⌘, ⌘0) ! g b
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(⌘, ⌘0) exp (ik.[s(⌘) � s(⌘0)]) , (102)

which is reminiscent of eqn (100). In other words the adiabatic long wave modes can entirely be
absorbed by an extended Galilean transformation leaving no imprint on equal time correlators.

Interestingly though, the existence of a transformation under which the equations are invari-
ant leads to so-called Ward identities the simplest of which we reproduce here,

lim
q!0

B(q,k, �k � q; ⌘, ⌘0, ⌘00) =

�q.k

q2

P lin.(q; ⌘, ⌘) P lin.(k; ⌘0, ⌘00)
⇣
e⌘

0�⌘ � e⌘

00�⌘

⌘
(103)

5The origin of this invariance is in the context of large-scale structure dynamics is deeply rooted in the
equivalence principle as shown in Creminelli et al. (2013) and significantly extends that of a mere Galilean
invariance as it states that the development of the gravitational instabilities in a given patch of the universe is
the same irrespectively of the fact that this patch is accelerated or not.

6To get a fully valid transformation one should also change the gravitational potential gradient in such a way

that the source term of the Euler equation is changed in fi ! fi +
d2

d⌘2 si(⌘) +
1
2

d
d⌘ si(⌘) which leaves the Poisson

equation unchanged.
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As a consequence, there are Ward identities

Kehagias and Riotto 2013; Peloso and Pietroni 2013; Creminelli et al. 2013

Richer than mere Galilean invariance !



The infrared domain and the eikonal approximation

On of the reason for exploring the mode coupling structure is that
the vertices � bc

a

(k1, k2) can be large when the ratio k1/k2 (or its
inverse) gets large. We will see that it corresponds to contributions
coming from the infrared (IR) domain.



The IR behavior for the 1-loop corrections to the power
spectrum

Ga
b (1-loop)(k, η2, η1) =

η1η2

×
η'1η'2

ga
g(η2-η'2)

ϒe
dc

 
gf

e(η'2-η'1)

ϒg
hf 

gc
b(η'1-η1)

gd
i(η'1)gh

j(η'2)

Pij(q)

Figure: The one-loop correction diagram to the propagator.

Let us first consider the one-loop correction to the power
spectrum. We want to compute the amplitude of the one-loop
correction when the wave mode that circulates in the loop q is
much smaller than the mode of interest, k.



The IR behavior for the 1-loop corrections to the power
spectrum

Let us consider more specially the left diagram appearing on Fig.
12 which is partly reproduced in more detail on Fig. 13. In this
approximation the incoming modes from the loop are either q or
�q. As one assumes q ⌧ k, the modes on the horizontal line is
always k. We can then compute the expression of each of the
vertices. The one on the right (at time ⌘01) then reads,

� dc

e

⇡ 1

2

q.k

q2
� c

e

� d

2 �
Dirac

(k � k1). (85)



The IR behavior for the 1-loop corrections to the power
spectrum

Anticipating the next paragraph we can call this the eikonal limit
of the vertex. We note two key properties: it is diagonal in the c
and e indices (of the main line) and it selects only the second
component of the incoming waves. The value of the other vertex
can be similarly evaluated,

� hf

g

⇡ �1

2

q.(k+ q)

q2
� f

g

� h

2 �
Dirac

(k�k1) ⇡ �1

2

q.k

q2
� f

g

� h

2 �
Dirac

(k�k1).

(86)
The actual computation of the diagram then requires to

I sum over all internal indices;
I integrate the intermediate time variables, ⌘01 and ⌘02, over

adequate intervals;
I integrate over the angle between q and k.



The IR behavior for the 1-loop corrections to the power
spectrum

The first step is now easy to perform and relies on generic
properties of Green functions; the algebraic structure along the
k-line indeed reads

g g

a

(⌘2 � ⌘02) � f

g

g e

f

(⌘02 � ⌘01) � c

e

g b

c

(⌘01 � ⌘1)

= g f

a

(⌘2 � ⌘02) g
c

f

(⌘02 � ⌘01) g
b

c

(⌘01 � ⌘1)

= g b

a

(⌘2 � ⌘1). (87)

The integration over the relative angle between q and k can then
be done straightforwardly:

Z
d

3
q

(q.k)2

q4
=

4⇡

3

Z
q2dq

k2

q2
. (88)



The IR behavior for the 1-loop corrections to the power
spectrum

We can now insert this result into the first diagram of Fig. 12. It
leads to

P1�loop,#1
ab

(k) = P lin.
ab

(k)
⇥
1 � k2�2

d

⇤
(89)

with

�2
d

(⌘) =
4⇡

3

Z
dq (e⌘ � e⌘0)2 P lin.

22 (q) (90)

if the incoming velocity modes are the in linear growing mode. �
d

can easily be interpreted as the r.m.s. of the 1D displacement field.



The IR behavior for the 1-loop corrections to the power
spectrum

A very similar calculation can be done for the second diagram of
Fig. 12. Using the same approximation one gets

P1�loop,#2
ab

(k) = P lin.
ab

(k)
⇥
1 + k2�2

d

⇤
(91)

and the two contributions actually cancel3. This cancellation was
first noted by [?] and by [?]. In the following we explicitly show
how it can be extended to all orders in perturbation theory with
the help of the so called eikonal approximation (introduced in [?]).

3
The actual calculations should be done with care in particular for a correct

determination of the symmetry factors.



Methods of Field Theory

Effective Theory approaches
Pietroni et al '12, Carrasco et al. '12 

  Standard PT: a series expansion in field values

Time-flow (renormalization) equations         M. Pietroni ’08
From the field evolution equation to the multi-
spectra evolution equation

Anselmi & Pietroni  '12

The closure theory (=Large N expansion)
Taruya & Hiramatsu,  ApJ 2008, 2009 Valageas P.,  A&A, 2007

Motion equations for correlators are derived using the Direct-Interaction (DI) 
approximation in which one separates the field expression in a DI part and a Non-DI part.  
At leading order in Non-DI >> DI, one gets a closed set of equations, 

The eikonal approximation FB, Van de Rijt & Vernizzi  2012

Renormalization Perturbation Theory                                             Crocce & Scoccimarro ’05, 06
Inspired by hydro turbulence resummation schemes, see L'vov & Procaccia ’95

FB et al. 2002



The key ingredients : the (multipoint) propagators

82

Scoccimarro and Crocce PRD, 2005

Gab(k) = k

FB, Crocce, Scoccimarro, PRD, 2008

�(2)
abc(k1,k2,k3) =

�(p)
ab1...bp

(k1, . . . ,kp, ⇥)�D(k� k1...p) =
1
p!

�
�p⇥a(k, ⇥)

�⇤b1(k1) . . . �⇤bp(kp)

⇥

A series reorganization: the multipoint propagator expansion 



‣ This suggests another scheme: to use the n-point propagators as 
the building blocks

83

Sum of positive terms

‣The reconstruction of the power spectrum :

‣ Also provide the building 
blocks for higher order 
moments...

FB, Crocce, Scoccimarro, PRD, 2008

‣ re-organisation(s) of the perturbation series

Γ-expansion method



‣ re-organisation(s) of the perturbation series (for instance with 
multipoint propagators introduced in FB, Crocce, Scoccimarro, 
PRD, 2008)

‣ Not a single way of doing (S)PT calculations

‣ change of variables or fields : most dramatic is Eulerian to 
Lagrangian

‣ PT can then come in many different flavors : SPT,  RPT,  TRG, 
RegPT,  gRPT,  MPT 



The RPT formulation

We are now in position to give the explicit form of the RPT
proposition described by [?] [?]. It is based on the construction of
the propagator G b

a

(k, ⌘) that encompasses both its full one-loop
correction and the e↵ect of the long-wave modes computed at all
orders. The explicit form adopted in the original paper is too
cumbersome to be re-derived here in detail but a form that shares
its properties can easily be obtained. The impact of the long-wave
modes can indeed be all incorporated with the help of the eikonal
approximation where the“naked’ Green function, g b

a

(⌘, ⌘0), is
transformed into the“dressed”one, ⇠ b

a

(⌘, ⌘0). Then armed with
the results from Section 73 we can first compute the ensemble
average of ⇠ b

a

(k, ⌘) with respect to the long-wave modes.
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a

(⌘, ⌘0). Then armed with
the results from Section 73 we can first compute the ensemble
average of ⇠ b

a

(k, ⌘) with respect to the long-wave modes.



The RPT formulation

When those modes are assumed to be in the linear regime and
therefore to be Gaussian distributed, the use of the relation (70),
leads to,

h⇠ b

a

(k, ⌘)i = g b

a

(⌘, ⌘0) exp

�1

2
k2�2

d

(⌘, ⌘0)
�

, (113)

where �
d

(⌘, ⌘0) is given by,

�2
d

(⌘, ⌘0) =
1

3
hd2(⌘, ⌘0)i = (e⌘ � e⌘

0
)2

Z
d

3
q

3q2
P lin.(q). (114)



The RPT formulation
This resummation result is the key result on which the RPT
scheme is based. It is furthermore possible to include the full
contribution of the one-loop contribution as given by the diagram
of Fig. 13. Indeed this diagram itself can be computed within the
eikonal framework and it leads to

G 1�loop b

a

(k, ⌘, ⌘0) ! G 1�loop b

a

(k, ⌘, ⌘0) exp(ik.d(⌘, ⌘0)) (115)

the ensemble average of which over the long-wave modes can also
be taken. A possible global form in then the following [?],

G reg b

a

(k, ⌘
f

, ⌘
i

) =
h
g b

a

(⌘, ⌘0) + �G 1�loop b

a

(k, ⌘, ⌘0)

+
1

2
k2�2

d

(⌘, ⌘0)g b

a

(⌘, ⌘0)
�

⇥ exp

✓
�
k2�2

d

(⌘, ⌘0)
2

◆
, (116)

which has the expected behavior for both the large k and in the
low k domains.



The two-point propagator 
at 1-loop and 2-loop orders



The RPT formulation

Other resummation schemes, MPTbreeze [?] and RegPT [?]
proposed afterwards take full advantage7 of the ��expansion
presented in the previous section. It is based on a similar
construction to (116) applied to the p�point propagator. More
specifically the following form can be used,

�
reg b1...bp
a

(k1, . . . , kp, ⌘, ⌘0) =
h
�
treeb1...bp
a

(k1, . . . , kp, ⌘, ⌘0) + ��
1�loopb1...bp
a

(k1, . . . , kp, ⌘, ⌘0)

+
1

2
k2�2

d

(⌘, ⌘0)�tree b1...bp
a

(k1, . . . , kp, ⌘, ⌘0)
�

exp

✓
�
k2�2

d

(⌘, ⌘0)
2

◆
(117)

where k = |k1 + · · · + k

p

|.

7
They also have the advantage to be faster to compute.



Comparison with numerical 
simulations at tree and one-loop order 
for the 3-point propagator
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The performances of perturbation theory at NNLO
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Figure: Comparison of PT results with N�body results for the power
spectrum at z = 1. The dotted line is the linear prediction; the dashed
lines are the standard PT and RegPT NLO predictions and the solid lines
the NNLO predictions. The grey area show the departure between these
predictions at one-loop order (light grey) and 2-loop order (darker grey).



Power spectra up to 1-loop and 2-loop order

•  Public codes for fast computations of power spectra at 2-loop order are 
now available.

http://maia.ice.cat/crocce/mptbreeze/

http://www-utap.phys.s.u-tokyo.ac.jp/
~ataruya/regpt_code.html

•Theoretical predictions are within 1% accuracy.

Taruya , FB, Nishimichi, Codis '12 Crocce, Scocimarro, FB, '12
1st computation of 2-loop order effects in  Okamura, Taruya, Matsubara, '11



The RPT formulation
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Figure: A tentative chart of the accuracy domain of the PT results with
contour plots of the 1 and 2% accuracy region for the linear, NLO, and
NNLO predictions for the power spectrum. The calculations have been
made for the WMAP5 cosmological parameters.



Performances in real and redshift space 

very good thanks to regularization

The BAO wiggle in real space

A. Taruya, T. Nishimichi, F. B. '13
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FIG. 4: Redshift-space correlation functions around the baryon acoustic peak. Monopole (` = 0), quadrupole (` = 2), and
hexadecapole (` = 4) moments of the redshift-space correlation function are respectively shown in left, middle and right panels.
Dotted lines are the linear theory predictions, while the dashed and solid lines respectively represent the results based on the
RSD model using the RegPT up to the one- and two-loop orders, adopting the Gaussian (thin) and Lorentzian (thick) damping
function.

FIG. 5: Redshift-space correlation functions at small scales. Plotted results are the ratio of correlation function to the linear
theory predictions taking account of the linear Kaiser factor, i.e., ⇠(S)` (s)/⇠(S)`,lin(s). For clarity, we artificially shift the results
at each redshift by a constant value (indicated by the horizontal dotted line). Symbols and line types are the same as those in
Fig. 2. The green shaded regions at z = 0.35 and 1 indicate the expected 1-� error of the hypothetical galaxy survey with the
volume V = 5h�3 Gpc3 and number density n = 5⇥ 10�4 h3 Mpc�3.

range of agreement with N -body simulations is compara-
ble to the one obtained in real space, and roughly matches
the range inferred from the power spectrum results. One
noticeable point in the prediction of correlation function
is that even the one-loop results do give an accurate pre-
diction over a wide range of correlation function, where
the choice of damping function hardly change the results.

On the other hand, similar to the power spectrum anal-
ysis, the measured hexadecapole moment su↵ers from the
e↵ect of finite grid-size, and in order to make a fair com-
parison, we need to incorporate the e↵ect of this into the
theoretical calculation. The triangles and squares are
the results taking account of the finite grid-size based

on the prescription in Appendix B. Then, the predic-
tions at high-z reproduce the N -body results almost per-
fectly, while we find a systematic discrepancy at low-z,
where the results also show a sensitive dependence on
the choice of the damping function. However, we note
that the discrepancy seen in the correlation function is
smaller than the statistical errors of the hypothetical sur-
veys, and it seems less significant compared to the re-
sults in power spectrum. This is partly because many
Fourier modes can contribute to the correlation function,
and they help to mitigate the significance of the discrep-
ancy seen in the power spectrum at some specific modes.
Strictly speaking, the amplitudes of the correlation func-

The BAO wiggle in z space



running RegPT :
• RegPT code available at (with Readme file)

http://www-utap.phys.s.u-
tokyo.ac.jp/~ataruya/
regpt_code.html
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δPlin(q)

An alternative to the power spectra : 
response functions

δPnl(k)

P nl
M2

(k) ⇡ P nl
M1

(k) +

Z
dq

q
RM1(k, q)

⇥
P lin
M2

(q)� P lin
M1

(q)
⇤

RM1(k, q) = q
�P nl

M1
(k)

�P lin
M1

(q)

Of direct interest from P(k) predictions:

How good can PTs be at predicting response functions ?

Nishimichi, FB, Taruya, '14
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k

Convergence properties

1-loop

P ]�loop

NL (k) =

Z
dq

q
K]�loop(k, q) Plin.(q)

Should it be regularized or taken into account with Effective Theory approaches?
Pietroni et al. '11, Carrasco et al. '12

ns < �1

k

2-loop

ns < �2

3-loop

q1

k
k k+ q1

3-loop

ns < �2.33

see also Blas, Garny, Konstandin '13



• UV shape of kernels is key to the validity of PT calculations and 
comparison with numerical simulations

• It comes from the IR behavior of coupling functions

�abc(k1, k2) =

�

⇤

⇧
0, (k1+k2).k2

2k2.k2
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, 0
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⇧
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and power counting
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Response functions in Perturbation Theory calculations
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k=0.5 h Mpc-1

k
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P ]�loop

NL (k) =

Z
dq

q
K]�loop(k, q) Plin.(q)

FB, Taruya, Nishimichi, '12
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Expression of the density kernel for the propagator at 1-loop order



First measurement of the response function
Nishimichi, FB, Taruya, '14



PERTURBATIVE APPROACH TO THE NONLINEAR GROWTH

EFFECTIVE MODEL

‣ Calculation based on SPT  

‣ low-q is fine, automatically. 

‣ 2-phenomenological regularizations 

‣ one, exp(-k2σd2) like RegPT 

‣ the other, exp(-q2σd2) 

‣ Cover a wide dynamic range 
seamlessly

data: 1400 sims.
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late time. At redshift zero, the discrepancy between the
model and simulations is striking. Furthermore analysis
of the response structure at three and higher loop order
(see e.g., [9]) suggests that PT calculations, at any finite
order, predict an even larger amplitude of the response
function in the high q region. This strongly suggests that
this anomaly is genuinely non-perturbative.

We propose an e↵ective description of this observed
behavior. As illustrated in Fig. 4 it can be modeled with
a Lorentzian:

T e↵.(k, q) =
⇥
T 1�loop(k, q) + T 2�loop(k, q)

⇤ 1

1 + (q/q
0

)2

(4)
characterized by a time-dependent critical wave mode,
q
0

(z) = 0.3D�2

+

(z)h/Mpc, where D
+

is the linear growth
factor, and the prefactor 0.3 is determined by fitting to
the data. Note that, as it can be checked in Fig. 4, q

0

is
independent of k preserving the k dependence of the re-
sponse function at the small scale limit. This dependence
is in full agreement with PT predictions.

FIG. 4: Response function divided by the two-loop PT at the
three wave modes k shown in the legend. We plot data points
only at q � 2k for definiteness. The over-plotted solid lines
correspond to the empirical form (4). Small solid symbols are
L9-N9 while the big hatched are L9-N10.

Discussion—. The simulation results give a clear evi-
dence that the mode transfer from small to large scales
is suppressed compared to the PT prediction when the
mode q enters the nonperturbative regime. However, the
origin of the suppression is yet to be understood. In
particular it is not clear whether it roots genuinely shell
crossing e↵ects [46].

It might be possible that such damping e↵ect origi-
nates from simpler mechanisms in single-stream physics.
It has been shown in particular that the nonlinear den-
sity propagator, which expresses the evolution of a given

wave mode with time, is exponentially damped by the
large-scale displacements. This is the standard result on
which the Renormalized Perturbation Theory is based
[25, 26]. As explicitly shown in [27] equal-time spectra
are however insensitive to displacements of the global sys-
tem, that originates from wave modes smaller than k.
Displacements at intermediate scales are nonetheless ex-
pected to induce some e↵ective damping for equal-time
spectra. The physical idea behind that is that the force
driving the collapse of a large-scale perturbation (e.g., a
cluster of galaxies) is a↵ected by the small scale inhomo-
geneities within the structure (say galaxies), but that this
dependence might be damped when such small scale in-
homogeneities are actually moving within the structure.
It is however beyond the scope of this presentation to
evaluate the importance of this e↵ect.
Summary—. We have presented the first direct mea-

surement of the response function that governs the de-
pendence of the nonlinear power spectrum on the initial
spectrum during cosmic structure formation. This mea-
surement was done using a large ensemble of N -body
simulations that di↵er slightly in their initial conditions.
The results were found to be robust to the simulation
resolution – as shown in Table I – supporting the idea
that measured shapes were genuine features in the devel-
opment of gravitational instabilities.
The response functions were computed concurrently at

next and next-to-next leading order in PT. Comparisons
with measurements show a remarkable agreement over a
wide range of scale and time. We found however mode
transfers from small to large scales to be strongly sup-
pressed compared to theoretical expectations especially
at late time. We propose a description of the damping
tail with a Lorentzian shape.
These results are of far-reaching consequences. They

first give insights into the mode coupling structure of cos-
mological fluids and show that PT approaches capture
most of their properties. The small scale damping sig-
nals the validity limit of the PT beyond next-to-leading
order. It provides in particular indications on how to
regularize their contributions. The observed damping
also marks the irruption of collective non-linear e↵ects
although the underlying mechanisms are yet to be un-
covered. Most importantly the damped response sug-
gests that small scale physics, whether from the initial
metric perturbations or late-time processes, can be ef-
fectively controlled. It paves the way for solid estimates
of the theoretical uncertainties on the determination of
cosmological parameters (such as inflationary primordial
non-Gaussianities, neutrino masses or dark energy pa-
rameters) from large-scale surveys.
We thank Patrick Valageas for fruitful discussions on

analytical calculations of the response function. This
works is supported in part by grant ANR-12-BS05-0002
of the French Agence Nationale de la Recherche. TN is
supported by JSPS. AT is supported by a Grant-in-Aid

Comparison with 2-loop results

‣ From PT perspective, UV regularization is necessary. It expresses the 
fact that power spectra are intrinsically sensitive to small scale physics.

4

late time. At redshift zero, the discrepancy between the
model and simulations is striking. Furthermore analysis
of the response structure at three and higher loop order
(see e.g., [9]) suggests that PT calculations, at any finite
order, predict an even larger amplitude of the response
function in the high q region. This strongly suggests that
this anomaly is genuinely non-perturbative.

We propose an e↵ective description of this observed
behavior. As illustrated in Fig. 4 it can be modeled with
a Lorentzian:

T e↵.(k, q) =
⇥
T 1�loop(k, q) + T 2�loop(k, q)

⇤ 1

1 + (q/q
0

)2

(4)
characterized by a time-dependent critical wave mode,
q
0

(z) = 0.3D�2

+

(z)h/Mpc, where D
+

is the linear growth
factor, and the prefactor 0.3 is determined by fitting to
the data. Note that, as it can be checked in Fig. 4, q

0

is
independent of k preserving the k dependence of the re-
sponse function at the small scale limit. This dependence
is in full agreement with PT predictions.
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Discussion—. The simulation results give a clear evi-
dence that the mode transfer from small to large scales
is suppressed compared to the PT prediction when the
mode q enters the nonperturbative regime. However, the
origin of the suppression is yet to be understood. In
particular it is not clear whether it roots genuinely shell
crossing e↵ects [46].

It might be possible that such damping e↵ect origi-
nates from simpler mechanisms in single-stream physics.
It has been shown in particular that the nonlinear den-
sity propagator, which expresses the evolution of a given

wave mode with time, is exponentially damped by the
large-scale displacements. This is the standard result on
which the Renormalized Perturbation Theory is based
[25, 26]. As explicitly shown in [27] equal-time spectra
are however insensitive to displacements of the global sys-
tem, that originates from wave modes smaller than k.
Displacements at intermediate scales are nonetheless ex-
pected to induce some e↵ective damping for equal-time
spectra. The physical idea behind that is that the force
driving the collapse of a large-scale perturbation (e.g., a
cluster of galaxies) is a↵ected by the small scale inhomo-
geneities within the structure (say galaxies), but that this
dependence might be damped when such small scale in-
homogeneities are actually moving within the structure.
It is however beyond the scope of this presentation to
evaluate the importance of this e↵ect.
Summary—. We have presented the first direct mea-

surement of the response function that governs the de-
pendence of the nonlinear power spectrum on the initial
spectrum during cosmic structure formation. This mea-
surement was done using a large ensemble of N -body
simulations that di↵er slightly in their initial conditions.
The results were found to be robust to the simulation
resolution – as shown in Table I – supporting the idea
that measured shapes were genuine features in the devel-
opment of gravitational instabilities.
The response functions were computed concurrently at

next and next-to-next leading order in PT. Comparisons
with measurements show a remarkable agreement over a
wide range of scale and time. We found however mode
transfers from small to large scales to be strongly sup-
pressed compared to theoretical expectations especially
at late time. We propose a description of the damping
tail with a Lorentzian shape.
These results are of far-reaching consequences. They

first give insights into the mode coupling structure of cos-
mological fluids and show that PT approaches capture
most of their properties. The small scale damping sig-
nals the validity limit of the PT beyond next-to-leading
order. It provides in particular indications on how to
regularize their contributions. The observed damping
also marks the irruption of collective non-linear e↵ects
although the underlying mechanisms are yet to be un-
covered. Most importantly the damped response sug-
gests that small scale physics, whether from the initial
metric perturbations or late-time processes, can be ef-
fectively controlled. It paves the way for solid estimates
of the theoretical uncertainties on the determination of
cosmological parameters (such as inflationary primordial
non-Gaussianities, neutrino masses or dark energy pa-
rameters) from large-scale surveys.
We thank Patrick Valageas for fruitful discussions on

analytical calculations of the response function. This
works is supported in part by grant ANR-12-BS05-0002
of the French Agence Nationale de la Recherche. TN is
supported by JSPS. AT is supported by a Grant-in-Aid
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UV and IR limit is dominated by the other term, K
2

. Also, the high-q behavior looks fine with this model. This
is in a sence accidental: we have already learned that this limit is dominated by the modelling of the �(1) function,
and in the present particular example is based on the one-loop result. One one includes two-loop correction here,
the mode-coupling from small to large scales gets too high. Looking at the other end of the plot, we can see some
drawback of this calculation: K

1

and K
2

are expected to cancel out in the IR limit because of the galilean invaliance,
and also supported by the simulation data, but the model cannot reproduce this.

On the other hand, the low-q part is fine in the standard PT calculation: we show this in the right panel in blue lines
(solid: two-loop and dashed: one-loop; the corresponding MPTbreeze calculations are shown in red). The convergence
is very poor for the SPT calculation at around q = k.

The best compromise is to combine the two prescriptions both at the two-loop order, we have an empirical model
that behaves well in both regimes. That is

K(k, q) =

8

<

:

K
SPT

(k, q), q < q
1

(k),
K

MPTbreeze

(k, q), q > q
2

(k),
r2(k, q)K

MPTbreeze

(k, q) + [1� r2(k, q)]K
SPT

(k, q), otherwise,
(14)

where q
1

(k) is the first zero crossing wavenumber q of the MPTbreeze prescription, K
MPTbreeze

(k, q) = 0, and q
2

(k)
is given by the lowest wavenumber q that satisfies K

SPT

(k, q) = K
MPTbreeze

(k, q) for a given k. Also, the factor r is
the ratio of the two functions, r = K

MPTbreeze

/K
SPT

. This is shown in Fig. 2 (thick solid). Taking advantages of the
two prescription, the new curve can reproduce the simulation data over a wide range in q. We can check that this
prescription works reasonably well at di↵erent redshifts and at di↵erent k (figures still to be made, but I did some
quick check of this).
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FIG. 2: Simple prescription (14) obtained by combining the SPT and the MPTbreeze predictions (solid). Also shown are the

original two models, MPTbreeze (red dashed) and SPT (blue dashed) computed up to the two-loop order. We rely on SPT at

q < q1 and MPTbreeze at q > q2. In between, we use a mixture of the two.

[1] A. Taruya, F. Bernardeau, T. Nishimichi, and S. Codis, Phys. Rev. D 86, 103528 (2012), 1208.1191.

[2] Notice that the convention of the normalization for K is di↵erent from that used in our previous paper.



PERTURBATIVE APPROACH TO THE NONLINEAR GROWTH

ANALYTICAL MODEL WITH HYBRID RESPONSE FUNCTION

Simulation data for PLANCK 
cosmology as the fiducial model 
✓ suppressed variance by “fixed-and-paired” 

method (Angulo, Pontzen’16)  
✓ -0.4 < z < 5, 20 outputs 
✓ alias correction by “interlacing” method 

(Sefusatti+’16) 

→ Prediction for WMAP5 
cosmology

TN et al. in prepfrom the definition of 
functional derivative
�Pnl(k) =

Z
d ln q K(k, q)�Plin(q)

Pwmap5(k) = Pplanck15(k) +

Z
d ln q K(k, q)[Plin,wmap5(q)� Plin,planck15(q)]
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calculations to galaxy catalogues

• Effective field theory corrective terms 

• Galaxy biasing 

• Redshift space distorsions
By order of difficulty !
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FIG. 3: Rescaled response function, T (k, q) ⌘ [K(k, q) �
K lin(k, q)]/[qP lin(k)]. SPT up to the one- and two-loop order
are shown by lines, whereas the symbols are L9-N9 (see legend
for detail). Taka:The wave-mode bin for the nonlinear power
spectrum is fixed to the one centered at k = 0.161hMpc�1

(see the vertical arrow). Binning is taken into account to the
analytical calculations consistently to the simulations.

function is observed to be damped compared to pertur-
bation theory predictions at one or two-loop order. As
can be seen on Fig. 3, the one-loop SPT (solid line) pre-
dicts the response function to reach a constant [44]; at
the two-loop order, it is expected to grow in amplitude
with time. The numerical measurements show on the
other hand that the scaled response function is strongly
damped with decreasing redshift. It is such that the
couplings between scales take place e↵ectively between
modes of similar wavelengths. This e↵ect is particularly
important at late time. At redshift zero, the departure
between two-loop predictions and numerical results is
striking. Furthermore analysis of the response structure
at three and higher loop order (see e.g., [12]) suggests
that SPT calculations, taken at any finite order, predict
an even larger amplitude of the response function in the
high q region. It strongly suggests that this anomaly is
genuinely non-perturbative.

We propose an e↵ective description of this observed
behavior. As illustrated on Fig. 4 we found that this can
be accounted for with a Lorentzian shape:

T e↵.(k, q) =
⇥
T 1�loop(k, q) + T 2�loop(k, q)

⇤ 1

1 + (q/q
0

)2

(4)
characterized by a time-dependent critical wave mode,
q
0

(z) = 0.3D�2

+

(z)h/Mpc, where D
+

is the linear growth
rate of the fluctuations, and Taka:the factor 0.3 is deter-
mined by fitting to the simulation data. Note that, as
it can be checked on Fig. 4, q

0

shows no dependence on

k preserving the k dependence of the response function
Taka:at the small scale limit. This dependence is in full
agreement with PT predictions.

FIG. 4: Response function divided by the two-loop SPT result
at the three Taka:wave modes k shown in the legend. We plot
data points only at q � 2k for definiteness. The over-plotted
solid lines correspond to the empirical form (4). Small solid
symbols are L9-N9 while the big hatched ones are L9-N10.

Discussion—. Taka:The simulation results give a clear
evidence that the mode transfer from small to large scales
is suppressed compared to the PT prediction as soon as
the small scale mode q enters the nonperturbative regime.
However, the origin of the suppression is yet to be un-
derstood. In particular it is not clear whether it can be
explained in the context of the physics of single stream
dynamics or if it is associated with genuine shell crossing
e↵ects [45].
It is possible however that such damping e↵ect origi-

nates from simpler mechanisms in single-stream physics.
It has been shown in particular that the nonlinear den-
sity propagator, which expresses how a given wave mode
is evolving with time, is exponentially damped by the
large-scale displacements. This is the standard result on
which the Renormalized Perturbation Theory approach
is based [31, 32]. As explicitly shown in [33] equal time
power spectra are however insensitive to displacements of
the global system, that is originating from wave modes
smaller than k. Displacements at intermediate scales are
nonetheless expected to induce some e↵ective damping
for equal time spectra. The physical idea behind such
a mechanism is that the force driving the collapse of
a large-scale perturbation (e.g., a cluster of galaxies) is
a↵ected by the small scale inhomogeneities within the
structure (say galaxies), but that this dependence might
be damped when such small scale inhomogeneities are
actually moving within the structure. This is however

Recap : mode couplings from standard gravitational 
dynamics 

safe from 
IR effects

UV crisis

Behavior of the response function
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companion papers [31, 32] we compare perturbation theory with the results of numerical simulations for the same
initial conditions. This is a more stringent test than what is presented here. Our goal in this paper is to reproduce the
comparison method used in the literature and try to relate the result to what we see in the more detailed comparison.
We will find that in terms of the maximum k where the perturbative calculation can be trusted both results agree.

This paper is organized as follows. After a brief review of the EFT of LSS, we consider in more detail the UV
sensitivity of the one- and two-loop integrals in Sec. II B and IIC. From the UV sensitivity, we derive our ansatz for
the two-loop counterterms in Sec. IID and an even simpler procedure for the counterterms is discussed in Sec. II E. In
Sec. III we compare our approach with numerical simulations and present our results. Also, we discuss the two-point
correlations functions that involve momentum.

II. THE EFT OF LSS

In the EFT of LSS one sets to solve perturbatively the following equations:

@⌧� + @i[(1 + �)vi] = @iu
i ,

@⌧v
i + Hvi + @i�+ vj@jv

i = � 1

a⇢
@j⌧

ij , (1)

4� =
3

2
H2⌦m� .

These equations di↵er from those of SPT [3] due to the addition of new source term, ui in the continuity equation
and a stress tensor source ⌧ ij in the Euler equation. These sources arise from small scales, where the perturbative
solution of SPT is not applicable. In the EFT of LSS they have to be modeled as they arise from modes that are
outside the range of applicability of the theory and thus result in the introduction of free parameters. The EFT of
LSS provides an organizing framework for how to model these sources, providing a list of terms with their associated
free parameters that need to be introduced to achieve a desired accuracy.

For simplicity, in the discussion that follows we concentrate on the stresses that appear in the Euler equation. In
this paper we will not consider velocity statistics, but only statistics involving the density and the momentum. In
such case it su�ces to discuss the stresses in the Euler equation as the e↵ects from ui in the statistics we will consider
can be mimicked by changing ⌧ ij . In any case, all the conceptual points we will make below are applicable to both
⌧ ij and ui.

The ⌧ ij stresses come in two di↵erent forms. Some of these stresses can be computed in terms of the perturbative
solution, others cannot. For the latter one only has a model for the statistical properties of those stresses. It is
convenient to decompose the velocity field into its gradient and curl pieces. At the order we will work in this paper
only the gradient component will be relevant, thus the stresses we need to model only enter through a scalar quantity:

⌧✓ ⌘ �@i


1

a⇢
@j⌧

j

�
= ⌧det✓ + ⌧ stoch✓ . (2)

The deterministic part of the stresses ⌧det✓ can be modelled perturbatively. In the EFT we write schematically

⌧det✓ = ⌧det✓ [@i@j �̄]. (3)

The deterministic part of the stresses is a local function of the perturbative solution, and we have used the equivalence
principle to demand that it can only depend on second derivatives of the gravitational potential (higher spatial deriva-
tives and time derivatives can also appear). We have introduced �̄ = �/(3/2H2⌦m) so that @i@j �̄ is dimensionless
and 4�̄ = �. For the stochastic part, all we can do is model the statistical properties of ⌧ stoch✓ .

In the EFT of LSS ⌧det✓ is modeled as a power series in @i@j �̄ and its spatial and time derivatives. In addition
to the equivalence principle, mass and momentum conservation restrict the form of both ⌧det✓ and of the statistical
properties of ⌧ stoch✓ . In particular in Fourier space ⌧det✓ (k) needs to go to zero at least as k2 faster than the density
when k ! 0 and the power spectrum of ⌧ stoch✓ should go to zero at least as k4.

To calculate the one-loop power spectra in ⇤CDM, only the lowest order piece of ⌧det✓ is relevant. It is given by

⌧det✓

��
LO

= �d24�(1) = �d244�̄(1) , (4)

where �(1) is the linear solution of perturbation theory. In this formulation, because ⌧det✓ acts as a source in the
equations of motion, the time dependence of d2 will a↵ect the results. In particular it will be relevant to determine
the relative sizes of the corrections in the di↵erent two point functions involving � and ✓.
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These equations di↵er from those of SPT [3] due to the addition of new source term, ui in the continuity equation
and a stress tensor source ⌧ ij in the Euler equation. These sources arise from small scales, where the perturbative
solution of SPT is not applicable. In the EFT of LSS they have to be modeled as they arise from modes that are
outside the range of applicability of the theory and thus result in the introduction of free parameters. The EFT of
LSS provides an organizing framework for how to model these sources, providing a list of terms with their associated
free parameters that need to be introduced to achieve a desired accuracy.

For simplicity, in the discussion that follows we concentrate on the stresses that appear in the Euler equation. In
this paper we will not consider velocity statistics, but only statistics involving the density and the momentum. In
such case it su�ces to discuss the stresses in the Euler equation as the e↵ects from ui in the statistics we will consider
can be mimicked by changing ⌧ ij . In any case, all the conceptual points we will make below are applicable to both
⌧ ij and ui.

The ⌧ ij stresses come in two di↵erent forms. Some of these stresses can be computed in terms of the perturbative
solution, others cannot. For the latter one only has a model for the statistical properties of those stresses. It is
convenient to decompose the velocity field into its gradient and curl pieces. At the order we will work in this paper
only the gradient component will be relevant, thus the stresses we need to model only enter through a scalar quantity:
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FIG. 1. Diagrams for the tree level, one- and two-loop expressions of the SPT power spectrum.

The case of the one loop bispectrum has already been considered in the literature [18, 19]. In that case the second
order counterterms are needed. This introduces three additional parameters for the spatial structure of ⌧det✓ . One can
write:

⌧det✓
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�(K)
ij 4

◆
�̄. (6)

In principle, d, e1, e2 and e3 could be fixed by measuring both the power spectra and bispectrum. In practice however,
with current simulations there are significant degeneracies among these di↵erent parameters. In practice, making an
ansatz for the ratios, scaling all counterterms by the same amplitude and fitting for this overall amplitude parameter,
seems good enough to explain simulation measurements [18].

In this paper we are interested in performing a two-loop calculation for the power spectrum and thus we would have
to model the stresses up to third order in the fields. Modeling these terms will increase the number of parameters even
further. At the level of the two point function however, some of these parameters will be degenerate. In principle,
one could disentangle all the new parameters comparing the predictions with the four point function measured from
simulations. In practice the necessary signal to noise ratio to do this is probably not available in the current generation
of simulations and a simple ansatz for the ratios of amplitudes of the various terms could be good enough. In any
case, in this paper we will only compare results against measurements of the two point function and thus we will not
have enough information to distinguish all the parameters. Furthermore, in this type of exercise one runs the risk
of overfitting the power spectra simply because one is introducing too many additional free parameters. In order to
avoid this, one should compare the results of perturbative calculations with simulations at the level of the fields as was
done in [31] for the Lagrangian displacement and in [32] for the density. In this paper we will adopt a simple ansatz
for the size of the various counterterms and only keep one overall free amplitude as a parameter. We will discuss this
in the next sections.

A. Perturbative solution and counterterms

In Standard Perturbation Theory (SPT, for a review see[3]) the perturbative solution of the equations of motion
has the following structure,

� = �(1) + �(2) + �(3) + �(4) + �(5) + · · · (7)

where �(n) depends on the initial conditions to the n-th power and we have only written terms relevant for the two loop
calculation of the two point function. When computing the power spectrum, one considers the averages of h�(n)�(m)i.

3

P11

Plin

P22

F2 F2

Plin

Plin

P13

F3 Plin

Plin

P15

F5 Plin

Plin

Plin

P24

F4 F2

Plin

Plin

Plin

P33�I

F3 F3Plin

Plin

PlinP33�II

F3 F3Plin

Plin Plin

2

FIG. 1. Diagrams for the tree level, one- and two-loop expressions of the SPT power spectrum.

The case of the one loop bispectrum has already been considered in the literature [18, 19]. In that case the second
order counterterms are needed. This introduces three additional parameters for the spatial structure of ⌧det✓ . One can
write:

⌧det✓

��
NLO

= �d24[�(1) + �(2)] � e14�2(1) � e24(sij(1)s
ij
(1)) � e3@is

ij
(1)@j�(1), (5)

with

sij =

✓
@i@j � 1

3
�(K)
ij 4

◆
�̄. (6)

In principle, d, e1, e2 and e3 could be fixed by measuring both the power spectra and bispectrum. In practice however,
with current simulations there are significant degeneracies among these di↵erent parameters. In practice, making an
ansatz for the ratios, scaling all counterterms by the same amplitude and fitting for this overall amplitude parameter,
seems good enough to explain simulation measurements [18].

In this paper we are interested in performing a two-loop calculation for the power spectrum and thus we would have
to model the stresses up to third order in the fields. Modeling these terms will increase the number of parameters even
further. At the level of the two point function however, some of these parameters will be degenerate. In principle,
one could disentangle all the new parameters comparing the predictions with the four point function measured from
simulations. In practice the necessary signal to noise ratio to do this is probably not available in the current generation
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done in [31] for the Lagrangian displacement and in [32] for the density. In this paper we will adopt a simple ansatz
for the size of the various counterterms and only keep one overall free amplitude as a parameter. We will discuss this
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The case of the one loop bispectrum has already been considered in the literature [18, 19]. In that case the second
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In principle, d, e1, e2 and e3 could be fixed by measuring both the power spectra and bispectrum. In practice however,
with current simulations there are significant degeneracies among these di↵erent parameters. In practice, making an
ansatz for the ratios, scaling all counterterms by the same amplitude and fitting for this overall amplitude parameter,
seems good enough to explain simulation measurements [18].

In this paper we are interested in performing a two-loop calculation for the power spectrum and thus we would have
to model the stresses up to third order in the fields. Modeling these terms will increase the number of parameters even
further. At the level of the two point function however, some of these parameters will be degenerate. In principle,
one could disentangle all the new parameters comparing the predictions with the four point function measured from
simulations. In practice the necessary signal to noise ratio to do this is probably not available in the current generation
of simulations and a simple ansatz for the ratios of amplitudes of the various terms could be good enough. In any
case, in this paper we will only compare results against measurements of the two point function and thus we will not
have enough information to distinguish all the parameters. Furthermore, in this type of exercise one runs the risk
of overfitting the power spectra simply because one is introducing too many additional free parameters. In order to
avoid this, one should compare the results of perturbative calculations with simulations at the level of the fields as was
done in [31] for the Lagrangian displacement and in [32] for the density. In this paper we will adopt a simple ansatz
for the size of the various counterterms and only keep one overall free amplitude as a parameter. We will discuss this
in the next sections.

A. Perturbative solution and counterterms

In Standard Perturbation Theory (SPT, for a review see[3]) the perturbative solution of the equations of motion
has the following structure,
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where �(n) depends on the initial conditions to the n-th power and we have only written terms relevant for the two loop
calculation of the two point function. When computing the power spectrum, one considers the averages of h�(n)�(m)i.

Going beyond: Effective Field Theory approaches

Describing the small scale physics, including shell crossings, with effective operators that 
respect symmetries of the problem (mass and momentum conservations) see for instance 
Carrasco et al. ’12.
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Figure 1: Schematic description of phase space after the first shell crossings and emergence of
multi-flow regions. The figure is for 1D dynamics. From left to right, one can see regions with
growing number of flows after dark matter caustic crossings.

The first two moments of the Vlasov equation give then the conservation and Euler equations,
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The first term of the right hand side of eqn (12) is the gravitational force, the second is due
to the pressure force which in general can be anisotropic. There are subsequent equations that
can be written for the whole hierarchy of the velocity moments and depending of the physical
situation, the hierarchy can be truncated if microphysics dictates a relation between the pressure
tensor and the local density (this is the case for perfect fluid), if for some reasons the higher
order moments become negligible as it is the case in the early phase of gravitational dynamics.

In the context we are interested in, the velocity actually vanishes until the formation of the
first caustics.

2.2 Single flow approximation

The early stages of the gravitational instabilities are indeed characterized, assuming the matter
is non-relativistic, by a negligible velocity dispersion when it is compared to the velocity flows,
i.e. much smaller than the velocity gradients induced by the density fluctuations of the scales of
interest. This is the single flow approximation. It simply states that one can assume

f(x,p, t) =
a3 ⇢(x, t)

m
�(3)[p � m au(x, t)], (13)

to a good approximation. This approximation will naturally break at the time of shell crossings
when di↵erent flows – pulled toward one-another by gravity – cross. A sketch of what the phase
space looks like is shown on Fig. 1. The multi-flow regions will eventually lead to the formation
of astrophysical objects through a complicated phase of relaxation (virialization, see Binney and
Tremaine (1987) for some hints on how that could take place). After shell crossings very little
analytical results are known and one should rely on N -body codes. Within this approximation
we simply have �

ij

(x, t) = 0.
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companion papers [31, 32] we compare perturbation theory with the results of numerical simulations for the same
initial conditions. This is a more stringent test than what is presented here. Our goal in this paper is to reproduce the
comparison method used in the literature and try to relate the result to what we see in the more detailed comparison.
We will find that in terms of the maximum k where the perturbative calculation can be trusted both results agree.

This paper is organized as follows. After a brief review of the EFT of LSS, we consider in more detail the UV
sensitivity of the one- and two-loop integrals in Sec. II B and IIC. From the UV sensitivity, we derive our ansatz for
the two-loop counterterms in Sec. IID and an even simpler procedure for the counterterms is discussed in Sec. II E. In
Sec. III we compare our approach with numerical simulations and present our results. Also, we discuss the two-point
correlations functions that involve momentum.

II. THE EFT OF LSS

In the EFT of LSS one sets to solve perturbatively the following equations:
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These equations di↵er from those of SPT [3] due to the addition of new source term, ui in the continuity equation
and a stress tensor source ⌧ ij in the Euler equation. These sources arise from small scales, where the perturbative
solution of SPT is not applicable. In the EFT of LSS they have to be modeled as they arise from modes that are
outside the range of applicability of the theory and thus result in the introduction of free parameters. The EFT of
LSS provides an organizing framework for how to model these sources, providing a list of terms with their associated
free parameters that need to be introduced to achieve a desired accuracy.

For simplicity, in the discussion that follows we concentrate on the stresses that appear in the Euler equation. In
this paper we will not consider velocity statistics, but only statistics involving the density and the momentum. In
such case it su�ces to discuss the stresses in the Euler equation as the e↵ects from ui in the statistics we will consider
can be mimicked by changing ⌧ ij . In any case, all the conceptual points we will make below are applicable to both
⌧ ij and ui.

The ⌧ ij stresses come in two di↵erent forms. Some of these stresses can be computed in terms of the perturbative
solution, others cannot. For the latter one only has a model for the statistical properties of those stresses. It is
convenient to decompose the velocity field into its gradient and curl pieces. At the order we will work in this paper
only the gradient component will be relevant, thus the stresses we need to model only enter through a scalar quantity:
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The deterministic part of the stresses ⌧det✓ can be modelled perturbatively. In the EFT we write schematically

⌧det✓ = ⌧det✓ [@i@j �̄]. (3)

The deterministic part of the stresses is a local function of the perturbative solution, and we have used the equivalence
principle to demand that it can only depend on second derivatives of the gravitational potential (higher spatial deriva-
tives and time derivatives can also appear). We have introduced �̄ = �/(3/2H2⌦m) so that @i@j �̄ is dimensionless
and 4�̄ = �. For the stochastic part, all we can do is model the statistical properties of ⌧ stoch✓ .

In the EFT of LSS ⌧det✓ is modeled as a power series in @i@j �̄ and its spatial and time derivatives. In addition
to the equivalence principle, mass and momentum conservation restrict the form of both ⌧det✓ and of the statistical
properties of ⌧ stoch✓ . In particular in Fourier space ⌧det✓ (k) needs to go to zero at least as k2 faster than the density
when k ! 0 and the power spectrum of ⌧ stoch✓ should go to zero at least as k4.

To calculate the one-loop power spectra in ⇤CDM, only the lowest order piece of ⌧det✓ is relevant. It is given by
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where �(1) is the linear solution of perturbation theory. In this formulation, because ⌧det✓ acts as a source in the
equations of motion, the time dependence of d2 will a↵ect the results. In particular it will be relevant to determine
the relative sizes of the corrections in the di↵erent two point functions involving � and ✓.
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The deterministic part of the stresses is a local function of the perturbative solution, and we have used the equivalence
principle to demand that it can only depend on second derivatives of the gravitational potential (higher spatial deriva-
tives and time derivatives can also appear). We have introduced �̄ = �/(3/2H2⌦m) so that @i@j �̄ is dimensionless
and 4�̄ = �. For the stochastic part, all we can do is model the statistical properties of ⌧ stoch✓ .

In the EFT of LSS ⌧det✓ is modeled as a power series in @i@j �̄ and its spatial and time derivatives. In addition
to the equivalence principle, mass and momentum conservation restrict the form of both ⌧det✓ and of the statistical
properties of ⌧ stoch✓ . In particular in Fourier space ⌧det✓ (k) needs to go to zero at least as k2 faster than the density
when k ! 0 and the power spectrum of ⌧ stoch✓ should go to zero at least as k4.

To calculate the one-loop power spectra in ⇤CDM, only the lowest order piece of ⌧det✓ is relevant. It is given by
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where �(1) is the linear solution of perturbation theory. In this formulation, because ⌧det✓ acts as a source in the
equations of motion, the time dependence of d2 will a↵ect the results. In particular it will be relevant to determine
the relative sizes of the corrections in the di↵erent two point functions involving � and ✓.
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companion papers [31, 32] we compare perturbation theory with the results of numerical simulations for the same
initial conditions. This is a more stringent test than what is presented here. Our goal in this paper is to reproduce the
comparison method used in the literature and try to relate the result to what we see in the more detailed comparison.
We will find that in terms of the maximum k where the perturbative calculation can be trusted both results agree.

This paper is organized as follows. After a brief review of the EFT of LSS, we consider in more detail the UV
sensitivity of the one- and two-loop integrals in Sec. II B and IIC. From the UV sensitivity, we derive our ansatz for
the two-loop counterterms in Sec. IID and an even simpler procedure for the counterterms is discussed in Sec. II E. In
Sec. III we compare our approach with numerical simulations and present our results. Also, we discuss the two-point
correlations functions that involve momentum.
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These equations di↵er from those of SPT [3] due to the addition of new source term, ui in the continuity equation
and a stress tensor source ⌧ ij in the Euler equation. These sources arise from small scales, where the perturbative
solution of SPT is not applicable. In the EFT of LSS they have to be modeled as they arise from modes that are
outside the range of applicability of the theory and thus result in the introduction of free parameters. The EFT of
LSS provides an organizing framework for how to model these sources, providing a list of terms with their associated
free parameters that need to be introduced to achieve a desired accuracy.

For simplicity, in the discussion that follows we concentrate on the stresses that appear in the Euler equation. In
this paper we will not consider velocity statistics, but only statistics involving the density and the momentum. In
such case it su�ces to discuss the stresses in the Euler equation as the e↵ects from ui in the statistics we will consider
can be mimicked by changing ⌧ ij . In any case, all the conceptual points we will make below are applicable to both
⌧ ij and ui.

The ⌧ ij stresses come in two di↵erent forms. Some of these stresses can be computed in terms of the perturbative
solution, others cannot. For the latter one only has a model for the statistical properties of those stresses. It is
convenient to decompose the velocity field into its gradient and curl pieces. At the order we will work in this paper
only the gradient component will be relevant, thus the stresses we need to model only enter through a scalar quantity:
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FIG. 1. Diagrams for the tree level, one- and two-loop expressions of the SPT power spectrum.

The case of the one loop bispectrum has already been considered in the literature [18, 19]. In that case the second
order counterterms are needed. This introduces three additional parameters for the spatial structure of ⌧det✓ . One can
write:

⌧det✓

��
NLO

= �d24[�(1) + �(2)] � e14�2(1) � e24(sij(1)s
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with
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�(K)
ij 4

◆
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In principle, d, e1, e2 and e3 could be fixed by measuring both the power spectra and bispectrum. In practice however,
with current simulations there are significant degeneracies among these di↵erent parameters. In practice, making an
ansatz for the ratios, scaling all counterterms by the same amplitude and fitting for this overall amplitude parameter,
seems good enough to explain simulation measurements [18].

In this paper we are interested in performing a two-loop calculation for the power spectrum and thus we would have
to model the stresses up to third order in the fields. Modeling these terms will increase the number of parameters even
further. At the level of the two point function however, some of these parameters will be degenerate. In principle,
one could disentangle all the new parameters comparing the predictions with the four point function measured from
simulations. In practice the necessary signal to noise ratio to do this is probably not available in the current generation
of simulations and a simple ansatz for the ratios of amplitudes of the various terms could be good enough. In any
case, in this paper we will only compare results against measurements of the two point function and thus we will not
have enough information to distinguish all the parameters. Furthermore, in this type of exercise one runs the risk
of overfitting the power spectra simply because one is introducing too many additional free parameters. In order to
avoid this, one should compare the results of perturbative calculations with simulations at the level of the fields as was
done in [31] for the Lagrangian displacement and in [32] for the density. In this paper we will adopt a simple ansatz
for the size of the various counterterms and only keep one overall free amplitude as a parameter. We will discuss this
in the next sections.

A. Perturbative solution and counterterms

In Standard Perturbation Theory (SPT, for a review see[3]) the perturbative solution of the equations of motion
has the following structure,

� = �(1) + �(2) + �(3) + �(4) + �(5) + · · · (7)

where �(n) depends on the initial conditions to the n-th power and we have only written terms relevant for the two loop
calculation of the two point function. When computing the power spectrum, one considers the averages of h�(n)�(m)i.
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In principle, d, e1, e2 and e3 could be fixed by measuring both the power spectra and bispectrum. In practice however,
with current simulations there are significant degeneracies among these di↵erent parameters. In practice, making an
ansatz for the ratios, scaling all counterterms by the same amplitude and fitting for this overall amplitude parameter,
seems good enough to explain simulation measurements [18].

In this paper we are interested in performing a two-loop calculation for the power spectrum and thus we would have
to model the stresses up to third order in the fields. Modeling these terms will increase the number of parameters even
further. At the level of the two point function however, some of these parameters will be degenerate. In principle,
one could disentangle all the new parameters comparing the predictions with the four point function measured from
simulations. In practice the necessary signal to noise ratio to do this is probably not available in the current generation
of simulations and a simple ansatz for the ratios of amplitudes of the various terms could be good enough. In any
case, in this paper we will only compare results against measurements of the two point function and thus we will not
have enough information to distinguish all the parameters. Furthermore, in this type of exercise one runs the risk
of overfitting the power spectra simply because one is introducing too many additional free parameters. In order to
avoid this, one should compare the results of perturbative calculations with simulations at the level of the fields as was
done in [31] for the Lagrangian displacement and in [32] for the density. In this paper we will adopt a simple ansatz
for the size of the various counterterms and only keep one overall free amplitude as a parameter. We will discuss this
in the next sections.

A. Perturbative solution and counterterms

In Standard Perturbation Theory (SPT, for a review see[3]) the perturbative solution of the equations of motion
has the following structure,

� = �(1) + �(2) + �(3) + �(4) + �(5) + · · · (7)

where �(n) depends on the initial conditions to the n-th power and we have only written terms relevant for the two loop
calculation of the two point function. When computing the power spectrum, one considers the averages of h�(n)�(m)i.
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The case of the one loop bispectrum has already been considered in the literature [18, 19]. In that case the second
order counterterms are needed. This introduces three additional parameters for the spatial structure of ⌧det✓ . One can
write:
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In principle, d, e1, e2 and e3 could be fixed by measuring both the power spectra and bispectrum. In practice however,
with current simulations there are significant degeneracies among these di↵erent parameters. In practice, making an
ansatz for the ratios, scaling all counterterms by the same amplitude and fitting for this overall amplitude parameter,
seems good enough to explain simulation measurements [18].

In this paper we are interested in performing a two-loop calculation for the power spectrum and thus we would have
to model the stresses up to third order in the fields. Modeling these terms will increase the number of parameters even
further. At the level of the two point function however, some of these parameters will be degenerate. In principle,
one could disentangle all the new parameters comparing the predictions with the four point function measured from
simulations. In practice the necessary signal to noise ratio to do this is probably not available in the current generation
of simulations and a simple ansatz for the ratios of amplitudes of the various terms could be good enough. In any
case, in this paper we will only compare results against measurements of the two point function and thus we will not
have enough information to distinguish all the parameters. Furthermore, in this type of exercise one runs the risk
of overfitting the power spectra simply because one is introducing too many additional free parameters. In order to
avoid this, one should compare the results of perturbative calculations with simulations at the level of the fields as was
done in [31] for the Lagrangian displacement and in [32] for the density. In this paper we will adopt a simple ansatz
for the size of the various counterterms and only keep one overall free amplitude as a parameter. We will discuss this
in the next sections.

A. Perturbative solution and counterterms

In Standard Perturbation Theory (SPT, for a review see[3]) the perturbative solution of the equations of motion
has the following structure,

� = �(1) + �(2) + �(3) + �(4) + �(5) + · · · (7)

where �(n) depends on the initial conditions to the n-th power and we have only written terms relevant for the two loop
calculation of the two point function. When computing the power spectrum, one considers the averages of h�(n)�(m)i.
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companion papers [31, 32] we compare perturbation theory with the results of numerical simulations for the same
initial conditions. This is a more stringent test than what is presented here. Our goal in this paper is to reproduce the
comparison method used in the literature and try to relate the result to what we see in the more detailed comparison.
We will find that in terms of the maximum k where the perturbative calculation can be trusted both results agree.

This paper is organized as follows. After a brief review of the EFT of LSS, we consider in more detail the UV
sensitivity of the one- and two-loop integrals in Sec. II B and IIC. From the UV sensitivity, we derive our ansatz for
the two-loop counterterms in Sec. IID and an even simpler procedure for the counterterms is discussed in Sec. II E. In
Sec. III we compare our approach with numerical simulations and present our results. Also, we discuss the two-point
correlations functions that involve momentum.

II. THE EFT OF LSS

In the EFT of LSS one sets to solve perturbatively the following equations:
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These equations di↵er from those of SPT [3] due to the addition of new source term, ui in the continuity equation
and a stress tensor source ⌧ ij in the Euler equation. These sources arise from small scales, where the perturbative
solution of SPT is not applicable. In the EFT of LSS they have to be modeled as they arise from modes that are
outside the range of applicability of the theory and thus result in the introduction of free parameters. The EFT of
LSS provides an organizing framework for how to model these sources, providing a list of terms with their associated
free parameters that need to be introduced to achieve a desired accuracy.

For simplicity, in the discussion that follows we concentrate on the stresses that appear in the Euler equation. In
this paper we will not consider velocity statistics, but only statistics involving the density and the momentum. In
such case it su�ces to discuss the stresses in the Euler equation as the e↵ects from ui in the statistics we will consider
can be mimicked by changing ⌧ ij . In any case, all the conceptual points we will make below are applicable to both
⌧ ij and ui.

The ⌧ ij stresses come in two di↵erent forms. Some of these stresses can be computed in terms of the perturbative
solution, others cannot. For the latter one only has a model for the statistical properties of those stresses. It is
convenient to decompose the velocity field into its gradient and curl pieces. At the order we will work in this paper
only the gradient component will be relevant, thus the stresses we need to model only enter through a scalar quantity:
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The deterministic part of the stresses ⌧det✓ can be modelled perturbatively. In the EFT we write schematically

⌧det✓ = ⌧det✓ [@i@j �̄]. (3)

The deterministic part of the stresses is a local function of the perturbative solution, and we have used the equivalence
principle to demand that it can only depend on second derivatives of the gravitational potential (higher spatial deriva-
tives and time derivatives can also appear). We have introduced �̄ = �/(3/2H2⌦m) so that @i@j �̄ is dimensionless
and 4�̄ = �. For the stochastic part, all we can do is model the statistical properties of ⌧ stoch✓ .

In the EFT of LSS ⌧det✓ is modeled as a power series in @i@j �̄ and its spatial and time derivatives. In addition
to the equivalence principle, mass and momentum conservation restrict the form of both ⌧det✓ and of the statistical
properties of ⌧ stoch✓ . In particular in Fourier space ⌧det✓ (k) needs to go to zero at least as k2 faster than the density
when k ! 0 and the power spectrum of ⌧ stoch✓ should go to zero at least as k4.

To calculate the one-loop power spectra in ⇤CDM, only the lowest order piece of ⌧det✓ is relevant. It is given by
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where �(1) is the linear solution of perturbation theory. In this formulation, because ⌧det✓ acts as a source in the
equations of motion, the time dependence of d2 will a↵ect the results. In particular it will be relevant to determine
the relative sizes of the corrections in the di↵erent two point functions involving � and ✓.
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companion papers [31, 32] we compare perturbation theory with the results of numerical simulations for the same
initial conditions. This is a more stringent test than what is presented here. Our goal in this paper is to reproduce the
comparison method used in the literature and try to relate the result to what we see in the more detailed comparison.
We will find that in terms of the maximum k where the perturbative calculation can be trusted both results agree.

This paper is organized as follows. After a brief review of the EFT of LSS, we consider in more detail the UV
sensitivity of the one- and two-loop integrals in Sec. II B and IIC. From the UV sensitivity, we derive our ansatz for
the two-loop counterterms in Sec. IID and an even simpler procedure for the counterterms is discussed in Sec. II E. In
Sec. III we compare our approach with numerical simulations and present our results. Also, we discuss the two-point
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These equations di↵er from those of SPT [3] due to the addition of new source term, ui in the continuity equation
and a stress tensor source ⌧ ij in the Euler equation. These sources arise from small scales, where the perturbative
solution of SPT is not applicable. In the EFT of LSS they have to be modeled as they arise from modes that are
outside the range of applicability of the theory and thus result in the introduction of free parameters. The EFT of
LSS provides an organizing framework for how to model these sources, providing a list of terms with their associated
free parameters that need to be introduced to achieve a desired accuracy.

For simplicity, in the discussion that follows we concentrate on the stresses that appear in the Euler equation. In
this paper we will not consider velocity statistics, but only statistics involving the density and the momentum. In
such case it su�ces to discuss the stresses in the Euler equation as the e↵ects from ui in the statistics we will consider
can be mimicked by changing ⌧ ij . In any case, all the conceptual points we will make below are applicable to both
⌧ ij and ui.

The ⌧ ij stresses come in two di↵erent forms. Some of these stresses can be computed in terms of the perturbative
solution, others cannot. For the latter one only has a model for the statistical properties of those stresses. It is
convenient to decompose the velocity field into its gradient and curl pieces. At the order we will work in this paper
only the gradient component will be relevant, thus the stresses we need to model only enter through a scalar quantity:
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companion papers [31, 32] we compare perturbation theory with the results of numerical simulations for the same
initial conditions. This is a more stringent test than what is presented here. Our goal in this paper is to reproduce the
comparison method used in the literature and try to relate the result to what we see in the more detailed comparison.
We will find that in terms of the maximum k where the perturbative calculation can be trusted both results agree.

This paper is organized as follows. After a brief review of the EFT of LSS, we consider in more detail the UV
sensitivity of the one- and two-loop integrals in Sec. II B and IIC. From the UV sensitivity, we derive our ansatz for
the two-loop counterterms in Sec. IID and an even simpler procedure for the counterterms is discussed in Sec. II E. In
Sec. III we compare our approach with numerical simulations and present our results. Also, we discuss the two-point
correlations functions that involve momentum.
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These equations di↵er from those of SPT [3] due to the addition of new source term, ui in the continuity equation
and a stress tensor source ⌧ ij in the Euler equation. These sources arise from small scales, where the perturbative
solution of SPT is not applicable. In the EFT of LSS they have to be modeled as they arise from modes that are
outside the range of applicability of the theory and thus result in the introduction of free parameters. The EFT of
LSS provides an organizing framework for how to model these sources, providing a list of terms with their associated
free parameters that need to be introduced to achieve a desired accuracy.

For simplicity, in the discussion that follows we concentrate on the stresses that appear in the Euler equation. In
this paper we will not consider velocity statistics, but only statistics involving the density and the momentum. In
such case it su�ces to discuss the stresses in the Euler equation as the e↵ects from ui in the statistics we will consider
can be mimicked by changing ⌧ ij . In any case, all the conceptual points we will make below are applicable to both
⌧ ij and ui.

The ⌧ ij stresses come in two di↵erent forms. Some of these stresses can be computed in terms of the perturbative
solution, others cannot. For the latter one only has a model for the statistical properties of those stresses. It is
convenient to decompose the velocity field into its gradient and curl pieces. At the order we will work in this paper
only the gradient component will be relevant, thus the stresses we need to model only enter through a scalar quantity:
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initial conditions. This is a more stringent test than what is presented here. Our goal in this paper is to reproduce the
comparison method used in the literature and try to relate the result to what we see in the more detailed comparison.
We will find that in terms of the maximum k where the perturbative calculation can be trusted both results agree.

This paper is organized as follows. After a brief review of the EFT of LSS, we consider in more detail the UV
sensitivity of the one- and two-loop integrals in Sec. II B and IIC. From the UV sensitivity, we derive our ansatz for
the two-loop counterterms in Sec. IID and an even simpler procedure for the counterterms is discussed in Sec. II E. In
Sec. III we compare our approach with numerical simulations and present our results. Also, we discuss the two-point
correlations functions that involve momentum.
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These equations di↵er from those of SPT [3] due to the addition of new source term, ui in the continuity equation
and a stress tensor source ⌧ ij in the Euler equation. These sources arise from small scales, where the perturbative
solution of SPT is not applicable. In the EFT of LSS they have to be modeled as they arise from modes that are
outside the range of applicability of the theory and thus result in the introduction of free parameters. The EFT of
LSS provides an organizing framework for how to model these sources, providing a list of terms with their associated
free parameters that need to be introduced to achieve a desired accuracy.

For simplicity, in the discussion that follows we concentrate on the stresses that appear in the Euler equation. In
this paper we will not consider velocity statistics, but only statistics involving the density and the momentum. In
such case it su�ces to discuss the stresses in the Euler equation as the e↵ects from ui in the statistics we will consider
can be mimicked by changing ⌧ ij . In any case, all the conceptual points we will make below are applicable to both
⌧ ij and ui.

The ⌧ ij stresses come in two di↵erent forms. Some of these stresses can be computed in terms of the perturbative
solution, others cannot. For the latter one only has a model for the statistical properties of those stresses. It is
convenient to decompose the velocity field into its gradient and curl pieces. At the order we will work in this paper
only the gradient component will be relevant, thus the stresses we need to model only enter through a scalar quantity:
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The deterministic part of the stresses ⌧det✓ can be modelled perturbatively. In the EFT we write schematically

⌧det✓ = ⌧det✓ [@i@j �̄]. (3)

The deterministic part of the stresses is a local function of the perturbative solution, and we have used the equivalence
principle to demand that it can only depend on second derivatives of the gravitational potential (higher spatial deriva-
tives and time derivatives can also appear). We have introduced �̄ = �/(3/2H2⌦m) so that @i@j �̄ is dimensionless
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when k ! 0 and the power spectrum of ⌧ stoch✓ should go to zero at least as k4.

To calculate the one-loop power spectra in ⇤CDM, only the lowest order piece of ⌧det✓ is relevant. It is given by
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where �(1) is the linear solution of perturbation theory. In this formulation, because ⌧det✓ acts as a source in the
equations of motion, the time dependence of d2 will a↵ect the results. In particular it will be relevant to determine
the relative sizes of the corrections in the di↵erent two point functions involving � and ✓.
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FIG. 1. Diagrams for the tree level, one- and two-loop expressions of the SPT power spectrum.

The case of the one loop bispectrum has already been considered in the literature [18, 19]. In that case the second
order counterterms are needed. This introduces three additional parameters for the spatial structure of ⌧det✓ . One can
write:

⌧det✓
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= �d24[�(1) + �(2)] � e14�2(1) � e24(sij(1)s
ij
(1)) � e3@is
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(1)@j�(1), (5)

with
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✓
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3
�(K)
ij 4

◆
�̄. (6)

In principle, d, e1, e2 and e3 could be fixed by measuring both the power spectra and bispectrum. In practice however,
with current simulations there are significant degeneracies among these di↵erent parameters. In practice, making an
ansatz for the ratios, scaling all counterterms by the same amplitude and fitting for this overall amplitude parameter,
seems good enough to explain simulation measurements [18].

In this paper we are interested in performing a two-loop calculation for the power spectrum and thus we would have
to model the stresses up to third order in the fields. Modeling these terms will increase the number of parameters even
further. At the level of the two point function however, some of these parameters will be degenerate. In principle,
one could disentangle all the new parameters comparing the predictions with the four point function measured from
simulations. In practice the necessary signal to noise ratio to do this is probably not available in the current generation
of simulations and a simple ansatz for the ratios of amplitudes of the various terms could be good enough. In any
case, in this paper we will only compare results against measurements of the two point function and thus we will not
have enough information to distinguish all the parameters. Furthermore, in this type of exercise one runs the risk
of overfitting the power spectra simply because one is introducing too many additional free parameters. In order to
avoid this, one should compare the results of perturbative calculations with simulations at the level of the fields as was
done in [31] for the Lagrangian displacement and in [32] for the density. In this paper we will adopt a simple ansatz
for the size of the various counterterms and only keep one overall free amplitude as a parameter. We will discuss this
in the next sections.

A. Perturbative solution and counterterms

In Standard Perturbation Theory (SPT, for a review see[3]) the perturbative solution of the equations of motion
has the following structure,

� = �(1) + �(2) + �(3) + �(4) + �(5) + · · · (7)

where �(n) depends on the initial conditions to the n-th power and we have only written terms relevant for the two loop
calculation of the two point function. When computing the power spectrum, one considers the averages of h�(n)�(m)i.
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In this paper we are interested in performing a two-loop calculation for the power spectrum and thus we would have
to model the stresses up to third order in the fields. Modeling these terms will increase the number of parameters even
further. At the level of the two point function however, some of these parameters will be degenerate. In principle,
one could disentangle all the new parameters comparing the predictions with the four point function measured from
simulations. In practice the necessary signal to noise ratio to do this is probably not available in the current generation
of simulations and a simple ansatz for the ratios of amplitudes of the various terms could be good enough. In any
case, in this paper we will only compare results against measurements of the two point function and thus we will not
have enough information to distinguish all the parameters. Furthermore, in this type of exercise one runs the risk
of overfitting the power spectra simply because one is introducing too many additional free parameters. In order to
avoid this, one should compare the results of perturbative calculations with simulations at the level of the fields as was
done in [31] for the Lagrangian displacement and in [32] for the density. In this paper we will adopt a simple ansatz
for the size of the various counterterms and only keep one overall free amplitude as a parameter. We will discuss this
in the next sections.

A. Perturbative solution and counterterms

In Standard Perturbation Theory (SPT, for a review see[3]) the perturbative solution of the equations of motion
has the following structure,
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calculation of the two point function. When computing the power spectrum, one considers the averages of h�(n)�(m)i.
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The case of the one loop bispectrum has already been considered in the literature [18, 19]. In that case the second
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In principle, d, e1, e2 and e3 could be fixed by measuring both the power spectra and bispectrum. In practice however,
with current simulations there are significant degeneracies among these di↵erent parameters. In practice, making an
ansatz for the ratios, scaling all counterterms by the same amplitude and fitting for this overall amplitude parameter,
seems good enough to explain simulation measurements [18].

In this paper we are interested in performing a two-loop calculation for the power spectrum and thus we would have
to model the stresses up to third order in the fields. Modeling these terms will increase the number of parameters even
further. At the level of the two point function however, some of these parameters will be degenerate. In principle,
one could disentangle all the new parameters comparing the predictions with the four point function measured from
simulations. In practice the necessary signal to noise ratio to do this is probably not available in the current generation
of simulations and a simple ansatz for the ratios of amplitudes of the various terms could be good enough. In any
case, in this paper we will only compare results against measurements of the two point function and thus we will not
have enough information to distinguish all the parameters. Furthermore, in this type of exercise one runs the risk
of overfitting the power spectra simply because one is introducing too many additional free parameters. In order to
avoid this, one should compare the results of perturbative calculations with simulations at the level of the fields as was
done in [31] for the Lagrangian displacement and in [32] for the density. In this paper we will adopt a simple ansatz
for the size of the various counterterms and only keep one overall free amplitude as a parameter. We will discuss this
in the next sections.
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In Standard Perturbation Theory (SPT, for a review see[3]) the perturbative solution of the equations of motion
has the following structure,
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companion papers [31, 32] we compare perturbation theory with the results of numerical simulations for the same
initial conditions. This is a more stringent test than what is presented here. Our goal in this paper is to reproduce the
comparison method used in the literature and try to relate the result to what we see in the more detailed comparison.
We will find that in terms of the maximum k where the perturbative calculation can be trusted both results agree.

This paper is organized as follows. After a brief review of the EFT of LSS, we consider in more detail the UV
sensitivity of the one- and two-loop integrals in Sec. II B and IIC. From the UV sensitivity, we derive our ansatz for
the two-loop counterterms in Sec. IID and an even simpler procedure for the counterterms is discussed in Sec. II E. In
Sec. III we compare our approach with numerical simulations and present our results. Also, we discuss the two-point
correlations functions that involve momentum.

II. THE EFT OF LSS

In the EFT of LSS one sets to solve perturbatively the following equations:
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These equations di↵er from those of SPT [3] due to the addition of new source term, ui in the continuity equation
and a stress tensor source ⌧ ij in the Euler equation. These sources arise from small scales, where the perturbative
solution of SPT is not applicable. In the EFT of LSS they have to be modeled as they arise from modes that are
outside the range of applicability of the theory and thus result in the introduction of free parameters. The EFT of
LSS provides an organizing framework for how to model these sources, providing a list of terms with their associated
free parameters that need to be introduced to achieve a desired accuracy.

For simplicity, in the discussion that follows we concentrate on the stresses that appear in the Euler equation. In
this paper we will not consider velocity statistics, but only statistics involving the density and the momentum. In
such case it su�ces to discuss the stresses in the Euler equation as the e↵ects from ui in the statistics we will consider
can be mimicked by changing ⌧ ij . In any case, all the conceptual points we will make below are applicable to both
⌧ ij and ui.

The ⌧ ij stresses come in two di↵erent forms. Some of these stresses can be computed in terms of the perturbative
solution, others cannot. For the latter one only has a model for the statistical properties of those stresses. It is
convenient to decompose the velocity field into its gradient and curl pieces. At the order we will work in this paper
only the gradient component will be relevant, thus the stresses we need to model only enter through a scalar quantity:
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The deterministic part of the stresses ⌧det✓ can be modelled perturbatively. In the EFT we write schematically

⌧det✓ = ⌧det✓ [@i@j �̄]. (3)

The deterministic part of the stresses is a local function of the perturbative solution, and we have used the equivalence
principle to demand that it can only depend on second derivatives of the gravitational potential (higher spatial deriva-
tives and time derivatives can also appear). We have introduced �̄ = �/(3/2H2⌦m) so that @i@j �̄ is dimensionless
and 4�̄ = �. For the stochastic part, all we can do is model the statistical properties of ⌧ stoch✓ .

In the EFT of LSS ⌧det✓ is modeled as a power series in @i@j �̄ and its spatial and time derivatives. In addition
to the equivalence principle, mass and momentum conservation restrict the form of both ⌧det✓ and of the statistical
properties of ⌧ stoch✓ . In particular in Fourier space ⌧det✓ (k) needs to go to zero at least as k2 faster than the density
when k ! 0 and the power spectrum of ⌧ stoch✓ should go to zero at least as k4.

To calculate the one-loop power spectra in ⇤CDM, only the lowest order piece of ⌧det✓ is relevant. It is given by
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where �(1) is the linear solution of perturbation theory. In this formulation, because ⌧det✓ acts as a source in the
equations of motion, the time dependence of d2 will a↵ect the results. In particular it will be relevant to determine
the relative sizes of the corrections in the di↵erent two point functions involving � and ✓.
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comparison method used in the literature and try to relate the result to what we see in the more detailed comparison.
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These equations di↵er from those of SPT [3] due to the addition of new source term, ui in the continuity equation
and a stress tensor source ⌧ ij in the Euler equation. These sources arise from small scales, where the perturbative
solution of SPT is not applicable. In the EFT of LSS they have to be modeled as they arise from modes that are
outside the range of applicability of the theory and thus result in the introduction of free parameters. The EFT of
LSS provides an organizing framework for how to model these sources, providing a list of terms with their associated
free parameters that need to be introduced to achieve a desired accuracy.

For simplicity, in the discussion that follows we concentrate on the stresses that appear in the Euler equation. In
this paper we will not consider velocity statistics, but only statistics involving the density and the momentum. In
such case it su�ces to discuss the stresses in the Euler equation as the e↵ects from ui in the statistics we will consider
can be mimicked by changing ⌧ ij . In any case, all the conceptual points we will make below are applicable to both
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and a stress tensor source ⌧ ij in the Euler equation. These sources arise from small scales, where the perturbative
solution of SPT is not applicable. In the EFT of LSS they have to be modeled as they arise from modes that are
outside the range of applicability of the theory and thus result in the introduction of free parameters. The EFT of
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free parameters that need to be introduced to achieve a desired accuracy.

For simplicity, in the discussion that follows we concentrate on the stresses that appear in the Euler equation. In
this paper we will not consider velocity statistics, but only statistics involving the density and the momentum. In
such case it su�ces to discuss the stresses in the Euler equation as the e↵ects from ui in the statistics we will consider
can be mimicked by changing ⌧ ij . In any case, all the conceptual points we will make below are applicable to both
⌧ ij and ui.

The ⌧ ij stresses come in two di↵erent forms. Some of these stresses can be computed in terms of the perturbative
solution, others cannot. For the latter one only has a model for the statistical properties of those stresses. It is
convenient to decompose the velocity field into its gradient and curl pieces. At the order we will work in this paper
only the gradient component will be relevant, thus the stresses we need to model only enter through a scalar quantity:
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= ⌧det✓ + ⌧ stoch✓ . (2)

The deterministic part of the stresses ⌧det✓ can be modelled perturbatively. In the EFT we write schematically

⌧det✓ = ⌧det✓ [@i@j �̄]. (3)

The deterministic part of the stresses is a local function of the perturbative solution, and we have used the equivalence
principle to demand that it can only depend on second derivatives of the gravitational potential (higher spatial deriva-
tives and time derivatives can also appear). We have introduced �̄ = �/(3/2H2⌦m) so that @i@j �̄ is dimensionless
and 4�̄ = �. For the stochastic part, all we can do is model the statistical properties of ⌧ stoch✓ .

In the EFT of LSS ⌧det✓ is modeled as a power series in @i@j �̄ and its spatial and time derivatives. In addition
to the equivalence principle, mass and momentum conservation restrict the form of both ⌧det✓ and of the statistical
properties of ⌧ stoch✓ . In particular in Fourier space ⌧det✓ (k) needs to go to zero at least as k2 faster than the density
when k ! 0 and the power spectrum of ⌧ stoch✓ should go to zero at least as k4.

To calculate the one-loop power spectra in ⇤CDM, only the lowest order piece of ⌧det✓ is relevant. It is given by

⌧det✓

��
LO

= �d24�(1) = �d244�̄(1) , (4)

where �(1) is the linear solution of perturbation theory. In this formulation, because ⌧det✓ acts as a source in the
equations of motion, the time dependence of d2 will a↵ect the results. In particular it will be relevant to determine
the relative sizes of the corrections in the di↵erent two point functions involving � and ✓.
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FIG. 1. Diagrams for the tree level, one- and two-loop expressions of the SPT power spectrum.

The case of the one loop bispectrum has already been considered in the literature [18, 19]. In that case the second
order counterterms are needed. This introduces three additional parameters for the spatial structure of ⌧det✓ . One can
write:

⌧det✓
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= �d24[�(1) + �(2)] � e14�2(1) � e24(sij(1)s
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◆
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In principle, d, e1, e2 and e3 could be fixed by measuring both the power spectra and bispectrum. In practice however,
with current simulations there are significant degeneracies among these di↵erent parameters. In practice, making an
ansatz for the ratios, scaling all counterterms by the same amplitude and fitting for this overall amplitude parameter,
seems good enough to explain simulation measurements [18].

In this paper we are interested in performing a two-loop calculation for the power spectrum and thus we would have
to model the stresses up to third order in the fields. Modeling these terms will increase the number of parameters even
further. At the level of the two point function however, some of these parameters will be degenerate. In principle,
one could disentangle all the new parameters comparing the predictions with the four point function measured from
simulations. In practice the necessary signal to noise ratio to do this is probably not available in the current generation
of simulations and a simple ansatz for the ratios of amplitudes of the various terms could be good enough. In any
case, in this paper we will only compare results against measurements of the two point function and thus we will not
have enough information to distinguish all the parameters. Furthermore, in this type of exercise one runs the risk
of overfitting the power spectra simply because one is introducing too many additional free parameters. In order to
avoid this, one should compare the results of perturbative calculations with simulations at the level of the fields as was
done in [31] for the Lagrangian displacement and in [32] for the density. In this paper we will adopt a simple ansatz
for the size of the various counterterms and only keep one overall free amplitude as a parameter. We will discuss this
in the next sections.

A. Perturbative solution and counterterms

In Standard Perturbation Theory (SPT, for a review see[3]) the perturbative solution of the equations of motion
has the following structure,

� = �(1) + �(2) + �(3) + �(4) + �(5) + · · · (7)

where �(n) depends on the initial conditions to the n-th power and we have only written terms relevant for the two loop
calculation of the two point function. When computing the power spectrum, one considers the averages of h�(n)�(m)i.
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with current simulations there are significant degeneracies among these di↵erent parameters. In practice, making an
ansatz for the ratios, scaling all counterterms by the same amplitude and fitting for this overall amplitude parameter,
seems good enough to explain simulation measurements [18].

In this paper we are interested in performing a two-loop calculation for the power spectrum and thus we would have
to model the stresses up to third order in the fields. Modeling these terms will increase the number of parameters even
further. At the level of the two point function however, some of these parameters will be degenerate. In principle,
one could disentangle all the new parameters comparing the predictions with the four point function measured from
simulations. In practice the necessary signal to noise ratio to do this is probably not available in the current generation
of simulations and a simple ansatz for the ratios of amplitudes of the various terms could be good enough. In any
case, in this paper we will only compare results against measurements of the two point function and thus we will not
have enough information to distinguish all the parameters. Furthermore, in this type of exercise one runs the risk
of overfitting the power spectra simply because one is introducing too many additional free parameters. In order to
avoid this, one should compare the results of perturbative calculations with simulations at the level of the fields as was
done in [31] for the Lagrangian displacement and in [32] for the density. In this paper we will adopt a simple ansatz
for the size of the various counterterms and only keep one overall free amplitude as a parameter. We will discuss this
in the next sections.

A. Perturbative solution and counterterms

In Standard Perturbation Theory (SPT, for a review see[3]) the perturbative solution of the equations of motion
has the following structure,
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where �(n) depends on the initial conditions to the n-th power and we have only written terms relevant for the two loop
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In principle, d, e1, e2 and e3 could be fixed by measuring both the power spectra and bispectrum. In practice however,
with current simulations there are significant degeneracies among these di↵erent parameters. In practice, making an
ansatz for the ratios, scaling all counterterms by the same amplitude and fitting for this overall amplitude parameter,
seems good enough to explain simulation measurements [18].

In this paper we are interested in performing a two-loop calculation for the power spectrum and thus we would have
to model the stresses up to third order in the fields. Modeling these terms will increase the number of parameters even
further. At the level of the two point function however, some of these parameters will be degenerate. In principle,
one could disentangle all the new parameters comparing the predictions with the four point function measured from
simulations. In practice the necessary signal to noise ratio to do this is probably not available in the current generation
of simulations and a simple ansatz for the ratios of amplitudes of the various terms could be good enough. In any
case, in this paper we will only compare results against measurements of the two point function and thus we will not
have enough information to distinguish all the parameters. Furthermore, in this type of exercise one runs the risk
of overfitting the power spectra simply because one is introducing too many additional free parameters. In order to
avoid this, one should compare the results of perturbative calculations with simulations at the level of the fields as was
done in [31] for the Lagrangian displacement and in [32] for the density. In this paper we will adopt a simple ansatz
for the size of the various counterterms and only keep one overall free amplitude as a parameter. We will discuss this
in the next sections.
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In Standard Perturbation Theory (SPT, for a review see[3]) the perturbative solution of the equations of motion
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- coarse graining (filtering)
- small scale physics

note that the time dependence of d should depend on order.
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Figure 4: Prediction of the EFT at two loops after the inclusion of the quadratic counterterms. We can
see that if we add just one of the counterterms, the k
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is pushed to k
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depending on the counterterm that is chosen, where the cosmic variance is about ⇠ 10�3. An estimate of
the theoretical error is shaded in pink, showing the possibility of the decrease of the k
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all the way to
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' 0.24 h Mpc�1 . When we fit contemporarily for two or even three of the quadratic counterterms,
we do not notice a significant improvement.

to the ones in (14).

4 Additional Counterterms

4.1 Quadratic counterterms: ⇠ k2P
1-loop

We start by adding to the prediction of the theory the counterterms in (10). It turns out that the
functional form of each of these terms are quite similar. Therefore we study how much the match of the
theory to the data is improved by first adding one term at the time, then two terms and then three terms.
The results are presented in Fig. 4.

When we add just one of the counterterms, we see that the EFTofLSS matches the data up to
k

reach

' 0.29 � 0.33 h Mpc�1 , depending on the counterterm we use, where the cosmic variance of the
data is as small as 2 ⇥ 10�3 (we notice that this is a remarkable level of precision). The sizes of the
numerical prefactors when each term is included separately are given respectively by
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Figure 7: Comparisons between 1-loop EFT (solid red), 2-loop EFT (solid blue) and SPT at tree
level (dotted green), one loop (dashed red), and two loops (dashed blue). The left plot shows the results
normalized to non-linear data (solid black) while dotted and dashed black lines are the 2-� limits associated
with 1 and 2 percent agreement (1-�) with the non-linear data. The red and blue bands show the 2-�
errors on the 1 and 2 loop EFT parameters respectively. The right plot is the same information without
the normalization to the non-linear data, and with the low-k region omitted for readability.
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By Fourier-transforming this equation, we find that
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and we can use the perturbative solutions for �(~k, a) (see App. C) to expand the right-hand side
up to the desired order. At one loop, we get
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We further apply the ansatz (58) about the time-dependent kernel K(a, a0), so that c̄
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Before we proceed, we should emphasize that the momentum power spectrum depends sen-

sitively on the assumptions made about the time-dependence of the c
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EFT is efficient is reproducing measured power spectra

z=0



Sonder les grandes structures de l’Univers avec les galaxies

Figure: Illustration d’un des premiers grands relevés extragalactiques
reproduisant la position 3D de milliers de galaxies. Cette ”tranche
d’univers”a été publiée initialement par V. de Lapparent et ses
collaborateurs [?].



Sonder les grandes structures de l’Univers avec les galaxies
Le moyen le plus direct pour sonder les grandes structures de
l’univers est encore de faire des relevés extragalactiques profonds et
simplement de compter les galaxies présentes dans di↵érentes
régions de l’espace. Cette méthode permet au moins d’apprécier la
manière dont se répartit la matière aux grandes échelles et
historiquement ces premiers relevés ont joué un grand rôle dans la
construction des modèles cosmologiques. Les premiers relevés
systématiques ont été entrepris à la fin des années 70 et dans les
années 80. Mentionnons en particulier le relevé CfA (voir figure
22).
Cela étant on se doute bien qu’une telle approche sou↵re de
limitations importantes : en ne détectant que la lumière on
s’expose à de multiples biais observationnels. Rien ne dit en e↵et
que la quantité de lumière reçue d’une région donnée donne une
bonne estimation de la quantité de matière qu’elle contient ; et
quand bien même une relation étroite existerait entre l’une et
l’autre, cette relation a toutes les chances d’évoluer sur des temps
cosmologiques.
Même grossièrement il est donc di�cile de relier le processus de
formation des galaxies à la simple formation de halos. Ce qui fait
qu’un halo va être détectable comme une galaxies vient de
processus d’échanges énergétiques et de refroidissement qui
dépendent de l’état d’ionisation du milieu. Le processus de
formation stellaire, et en conséquence la luminosité d’une galaxie,
est intimement lié à ces taux de refroidissement.
Les remarques introductives précédentes soulignent combien il peut
être di�cile d’appliquer les résultats généraux décrivant les
instabilités gravitationnelles dans un fluide de matière noire à une
distribution de galaxies. Rien ne nous assure que leur distribution
reproduise fidèlement la distribution de matière noire sous-jacente.
C’est le problème générique du biais.
Il reste que le comptage de galaxies est en moyen irremplaçable
pour explorer les grandes structures de l’univers et il nous faut
tenter de circonscrire le problème du biais. Et quand bien même
celui-ci serait négligeable, il faut aussi tenir compte du fait que les
relevés extra-galactiques ne permettent pas d’accéder directement
au champ de densité tridimentionnelle, que ce soit dans les relevés
angulaires ou dans les relevés en espace des redshifts.



Comment décrire le biais ?

La description phénoménologique la plus simple qu’on puisse en
faire, et qui est de fait souvent utilisée dans la littérature, est de
supposer que les contrastes de densité mesurés sont proportionnels
entre eux,

�g (x) = b �(x). (125)

Une des conséquences directes de cette hypothèse est que les
spectres des deux champs sont proportionnels, Pg (k) = b2 P(k).
Tant que l’on s’intéresse aux statistiques à deux points, les
observations montrent que cela reste une hypothèse raisonnable, b
pouvant dépendre de la nature des galaxies, des seuils en
luminosité appliquées, etc. Cependant quand on cherche à décrire
des propriétés plus fines du champ de densité, cette hypothèse
devient largement insu�sante.

Est-ce une hypothèse justifiée ?
Comment étendre cette relation aux petites échelles ?
Biais locaux ou non-locaux ?



Quelques résultats généraux
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Figure: Modèle de biais de N. Kaiser : Les galaxies ne sont pas supposées
être distribuées comme une représentation Poissonienne du champ de
densité sous-jacent mais sur les extrema du champ où la densité excède
un certain seuil. La figure illustre le fait que cette condition de seuil est
plus facilement remplie dans les régions les plus denses conduisant à un
e↵et de biais.



Galaxy bias

La première approche théorique visant à décrire le phénomène de
biais a été mise en avant par N. Kaiser [?], qui a montré que les
propriétés des maxima d’un champ gaussiens, plus fortement
corrélés que le champ lui-même, pouvaient ainsi rendre compte des
observations faites sur les amas de galaxies. Ces résultats ont été
étendus en particulier dans [?] où il est montré que les pics rares
sont corrélés de telle façon que,

⌦
�2
pic

↵
= b2

pic

⌦
�2

↵
(126)

où �
pic

est le contraste de densité dans la densité de pics et où le
paramètre de biais est donné par,

b
pic

(⌫) =
⌫

�
, (127)

� étant la variance du champ de matière à l’échelle du pic et ⌫ le
contraste de densité servant à définir le pic en unité de �.



Galaxy bias

Cette image a le mérite d’être simple. Elle ne rend pas forcément
pleinement compte des observations faites dans les simulations
numériques où il n’y a pas toujours une correspondance exacte
entre pics du champ de densité initial et halos de matière noire.
Une manière beaucoup plus phénoménologique d’aborder le
problème est de supposer qu’il existe, au moins à une échelle
su�samment grande, une relation éventuellement nonlinéaire entre
le contraste de densité des galaxies et le contraste de densité du
champ de matière filtré à cette échelle, au même endroit.
Autrement dit, on suppose qu’on peut écrire,

�̂g (x) = F [�̂(x)], Â(x) ⌘
Z

|x0|<R
d

3
x

0A(x � x

0)W (x0) (128)

où W est un filtre.



Galaxy bias

Pour de grandes valeurs de R, où �̂ ⌧ 1, rien n’empêche a priori de
développer perturbativement F en série de Taylor permettant de
reconstruire la hiérarchie des corrélation des galaxies [?]. Ainsi,

�̂g =
1X

k=0

bk
k!

�̂k , (129)

où b1 correspondrait au facteur de biais linéaire standard. Dans
une limite de grande échelle, une telle transformée locale préserve
les propriétés hiérarchiques de la distribution de masse, mais en
a↵ecte les valeurs. Ainsi par exemple il est aisé de montrer que9

9
Remarquons d’ailleurs que la prescription choisie englobe les modèles de

biais basés sur des e↵ets de seuil (comme celui proposé dans [?]) où on a par

exemple la prescription �g = 1 si � > ⌫� ; �g = 0 sinon.



Galaxy bias

Dans la mesure où les transformées de Fourier peuvent être vues
aussi comme des opérations de filtrage, des résultats similaires à
ceux écrits précédemment s’appliquent pour les grandes longueurs
d’onde. Le spectre de puissance des galaxies doit donc s’écrire,

Pg (k) = b21 P(k), (130)

tandis que le bispectre réduit prend la forme,

Qg (k1, k2, k3) =
1

b1
Q(k1, k2, k3) +

b2
b21

. (131)



However bias is not necessarily local

which is proportional to the nonlocal term found in the third order calculation of Sec. 2.4, up to cubic local
terms.

We now discuss the approximation made in constructing the convenient bases Eq. (2.74) and Eq. (2.77),
namely that all contributions at a given perturbative order n, which scale as Dn(⌧). This is only strictly
true in EdS, while in ⇤CDM and quintessence cosmologies new time dependences appear at each new order.
For example, at second order operators can involve both [D(⌧)]2 and D2(⌧), where D2(⌧) /

R

D2dlnD is the
second-order growth factor. This means that the operators in the bases described above are not su�cient
anymore. However, the first instance of a new term appears only at fourth order. Moreover, in ⇤CDM,
D2(⌧) di↵ers from [D(⌧)]2 only at the subpercent level [115]. This means that the additional operators
added to complete the operator bases described here will be (i) fourth and higher order; (ii) suppressed by
a numerical prefactor . 0.01. They will thus likely be irrelevant for most practical applications.

2.6. Higher derivative biases

In the treatment so far, we have worked in the approximation that the formation of halos and galaxies is
perfectly local in a spatial sense, allowing us to write the bias expansion in terms of the operators evaluated
at O(x, ⌧), or OL(q, ⌧) in case of the Lagrangian basis. However, we know that the formation of halos and
galaxies involves the collapse of matter from a finite region in space, and thus, the perfectly local expansion
cannot be completely correct. In this section, we derive the corrections to the spatially local approximation,
and the set of additional operators to include in the expansion Eq. (2.69). We refer to the latter as higher
derivative operators.

If the formation of galaxies is not perfectly local, we should replace the local operators O(x, ⌧) appearing
in Eq. (2.69) with functionals of O(x0, ⌧) [116, 117]. For example, for the single linear order operator in the
Eulerian basis, O = �, we should replace

b�(⌧)�(x, ⌧) !
Z

d3y F�(y, ⌧)�(x + y, ⌧) , (2.79)

where F�(y, ⌧) is a kernel that is in general time-dependent and specific to the operator, in this case �. Here
we have used homogeneity, i.e. the absence of preferred locations. We can now perform a formal Taylor
series of � around x, leading to

b�(⌧)�(x, ⌧) !


Z

d3y F�(y, ⌧)

�

�(x, ⌧) +



1

6

Z

d3y y

2 F�(y, ⌧)

�

r2
x�(x, ⌧) + · · ·

= b�(⌧)�(x, ⌧) + br2�(⌧)R2
⇤r2

x�(x, ⌧) + · · · , (2.80)

where statistical isotropy demands the absence of any preferred directions with which the derivative operators
could be contracted. This requires the additional terms to involve powers of r2 acting on �(x, ⌧). We then
identify the standard bias with the “total mass” of the kernel, while the second integral, “moment of inertia”
of the kernel, defines a new higher derivative bias parameter br2� which becomes dimensionless by pulling
out the scale R2

⇤.
Since the kernel F� describes how the formation of galaxies depends on the precise distribution of matter

in the vicinity of x, it is indeed sensible to connect the second moment of F� with the non-locality scale R⇤
introduced in Sec. 2.5.1. If F� corresponds to a normalized smoothing kernel, then we expect that br2� < 0.
However, this does not have to be so, for which peaks of the density field provided an illuminating example
see Sec. 6. Similarly, the next higher correction in Eq. (2.80) scales as R4

⇤(r2)2�. In Fourier space, the
second term in Eq. (2.80) corresponds to a scale-dependent bias / (R⇤k)2�, with higher corrections scaling
as (R⇤k)2n�. The same reasoning of course goes through in the Lagrangian, or indeed any other basis of
operators, by replacing r2

x with r2
q. In terms of the correlation function of galaxies, the leading correction

is of the form
R2

⇤ r2
r⇠(r) , (2.81)

where ⇠(r) is the matter correlation function. Note that, this term can become observationally relevant not
just for r ⇠ R⇤ but on the much larger BAO feature scale (r ⇠ 105 Mpc/h) because of the narrow width of
the BAO feature and corresponding enhancement of the derivatives of ⇠(r) [118, 119].
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Consequences are that biasing is not only a function 
of the local matter density. There are now non-local 
operators,

see review paper of Desjacques et al., soon to come ?

•Should be extended to non-linear operators 
(imposing ext. Galilean invariance) 

•Very similar to EFT free parameters !



Catalogues tri-dimentionnels : espace des redshifts

Figure: Illustration de l’apparition de caustiques en espace des redshifts.
On voit apparâıtre au centre une région multiflots pour cette perturbation
à symétrie sphérique non-critique en espace réel.



Catalogues tri-dimentionnels : espace des redshifts

Les observations en espace des redshifts mélangent donc les
positions réelles et certaines composantes de la vitesse particulière
des objets. L’objet des calculs qui suivent est d’explorer les
propriétés statistiques d’un tel ensemble de points. Pour mener ces
calculs on va d’ailleurs faire une approximation habituelle, celle des
plans parallèles, ou des petits angles. Cela revient à dire que
localement la direction n̂ reste inchangée. Elle est identique à une
direction ẑ fixe. Dans une telle approximation l’univers reste
statiquement homogène - mais pas isotrope. Il reste qu’une
décomposition en modes de Fourier reste toujours possible. On va
donc s’intéresser au comportement du spectre de puissance dans
cette représentation et naturellement celui-ci sera di↵érent pour
des modes dans la direction ẑ et pour des modes dans les
directions orthogonales.



Catalogues tri-dimentionnels : espace des redshifts
De la relation (133) on peut construire la densité dans l’espace des
redshifts. Remarquons tout de suite que la relation (133) peut
avoir plus d’une solution en x pour une position en espace des
redshift donnée. Pour une solution donnée, la densité découle de ce
changement de variable et de la conservation de la densité de
particules, e.g.,

(1 + �z)d
3
x

z

= (1 + �)d3
x . (134)

En utilisant le fait que d

3
x

z

= J(x)d3
x, où,

J(x) = |1 + 1

aH

@

@z
uz(x)|, (135)

est le jacobien exact du moins dans l’approximation des
plans-parallèles, il vient,

1 + �z(xz) =
X

i

1

J(xi )
(1 + �(xi )). (136)

où la somme sur i porte sur chacune des solutions de (133).



Catalogues tri-dimentionnels : espace des redshifts

L’existence de solutions multiples dans la relation x � x

z

vient des
e↵ets de vitesse particulière et de la possibilité pour le jacobien de
s’annuler. Il est à noter que le régime multiflot en espace des
redshifts est beaucoup plus étendu qu’en espace réel dans la
direction radiale ; c’est une des limitations principales des
investigations analytiques qu’on peut mener dans cet espace. A
l’extérieur des caustiques, donc à l’extérieur des régimes multiflots,
l’expression du contraste de densité en espace de Fourier découle
de l’équation (136),

�z(k) =

Z
d

3
x

(2⇡)3/2
e�ik·xe ikzuz (x)/(aH)


�(x) � 1

aH

@

@z
uz(x)

�
.

(137)



Le spectre de puissance en espace des redshifts

Les calculs en espace des redshifts procèdent de la même façon
qu’en espace réel. A l’ordre dominant il vient [?],

Pz(k) = P(k) (1 + f µ2)2. (144)

Cette expression est valable pour des traceurs reproduisant le
champ de densité. Introduisons la possibilité que les galaxies
puissent être un traceur biaisé du champ de densité. Ici on suppose
simplement que le contraste de densité linéaire de champ de
galaxies �g est proportionnel au contraste de densité linéaire de
masse,

�g (k) = b�(k), (145)

tout en ayant des flots de déplacement à grande échelle
reproduisant ceux de la matière11.

11
L’idée sous-jacente est simple : l’accélération d’un objet est indépendante

de sa masse.



Le spectre de puissance en espace des redshifts
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Figure: Dépendance géométrique du spectre de puissance en espace des
redshifts pour le modèle cosmologique concordant en fonction de k (en
unité de h/Mpc). L’axe vertical correspond à la direction le long de la
ligne de visée ; l’axe horizontal à une direction transverse. Les lignes de
contour sont régulièrement espacées en échelle logarithmique. La
dispersion de vitesse sur la ligne de visée adoptée correspond à
�v = 0.05h�1Mpc.



Le spectre de puissance en espace des redshifts
Alors en espace réel le spectre de puissance est simplement,

Pg (k) = b2 P(k). (146)

En espace des redshifts il vient,

Pz(k) = Pg (k) (1 + �µ2)2, (147)

où � ⌘ f /b ⇡ ⌦0.6
m /b. Remarquons que le spectre de puissance a

une dépendance angulaire spécifique qui peut s’exprimer au travers
d’une décomposition multipolaire,

Pz(k) =
1X

l=0

al(�)Pl (µ)Pg (k), (148)

avec les coe�cients al non nuls suivant,

a0 = 1 +
2

3
� +

1

5
�2, a2 =

4

3
� +

4

7
�2, a4 =

8

35
�2. (149)

La relation (147) est un outil largement utilisé non seulement pour
mesurer le spectre de puissance Pg (k) mais aussi pour mesurer �.



Le spectre de puissance en espace des redshifts

Il est à noter que cette expression est malheureusement valable
uniquement pour les grandes échelles, c’est à dire quand k ! 0.
En pratique les e↵ets de petites échelles restent très importants. Et
en e↵et les dispersions de vitesses intrinsèques dans les puits de
potentiel modifient significativement la forme du spectre. On
retrouve ici les e↵ets des régimes multi-flots dans les propriétés de
l’espace des redshifts. Ces e↵ets sont évidemment di�ciles à
décrire rigoureusement. On peut cependant s’appuyer sur une
description phénoménologique de la dispersion de vitesse le long de
la ligne de visée, �v . Si on admet que celle-ci agit comme un
simple filtre Lorentzian/Gaussian dans cette direction alors le
spectre de puissance prend finalement la forme suivante,

Ps(k) = Pg (k)
(1 + �µ2)2

[1 + (kµf �v )2/2]
2 (Lorentzian)

Ps(k) = Pg (k) (1 + �µ2)2 exp
⇥
�(kµf �v )

2
⇤
(Gaussian).
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L’expression formelle de ce mode de Fourier, exprimée en fonction
des modes de Fourier du champ de densité réel et du champ de
divergence est alors,

�z(k) = (2⇡)3/2
1X

n=1

Z
d

3
k1

(2⇡)3/2
. . .

d

3
kn

(2⇡)3/2
�
Dirac

(k � ⌃iki )

⇥
h
�(k1) � µ2

1✓(k1)
i(�µk)n�1

(n � 1)!

µ2

k2
✓(k2) . . .

µn

kn
✓(kn), (138)

où on rappelle que ✓ = 1/(aH)r.u (et où ✓(k) sont ses modes de
Fourier), µi ⌘ ki · ẑ/ki est le cosinus de l’angle entre ki et la
direction de la ligne de visée (avec une définition similaire pour µ).
Si l’on s’en tient à une théorie linéaire où l’on a ✓ = �f �, on
retrouve le résultat de N. Kaiser [?]

�z(k) = �(k)(1 + f µ2). (139)



Catalogues tri-dimentionnels : espace des redshifts

Il reste que l’équation (138) peut être utilisée pour obtenir les
propriétés de la densité en espace des redshifts au delà de la théorie
linéaire. Ainsi Formellement on peut écrire les termes d’un
développement perturbatif de la densité en espace des redshifts de
la forme

�z(x) =
X

n

�(n)z (x) (140)

�(n)z (k, t) =

Z
d

3
k1

(2⇡)3/2
. . .

Z
d

3
kn

(2⇡)3/2
e ixz ·⌃iki

⇥ Zn(k1, . . . , kn)D
n
1 (t) �1(k1) · · · �1(kn), (141)

où D1(t) facteur de croissance de la théorie linéaire et où on
suppose que la dépendance en temps du terme d’ordre n est
Dn / Dn

1 , (résultat exact en espace Einstein-de Sitter et qui est
une excellente approximation en général).
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Les noyaux Zn se déduisent alors des noyaux obtenus en théorie
quasilinéaire pour le champ de densité et de divergence,

Z1(k) = (1 + f µ2), (142)

Z2(k1, k2) = F2(k1, k2) + f µ2G2(k1, k2)

+
f µk

2

hµ1

k1
(1 + f µ2

2) +
µ2

k2
(1 + f µ2

1)
i
, (143)

où on a µ ⌘ k · ẑ/k, avec k ⌘ k1 + . . . + kn, et µi ⌘ ki · ẑ/ki . Les
fonctions F2 et G2 sont les noyaux10 pour le second ordre pour le
champ de densité et de divergence. Ces résultats peuvent bien sûr
être étendus à de plus grands ordres. Nous avons maintenant tous
les éléments pour aborder le calcul du spectre ou du bispectre en
espace des redshifts.

10
Ainsi définis ces noyaux dépendent très peu des paramètres cosmologiques.
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j1, we have

⟨ej1A1A2A3⟩c + ⟨ej1A1A2⟩c⟨ej1A1A3⟩c
≃ ⟨A2A3⟩+ j1⟨A1A2A3⟩c

+ j21

{1

2
⟨A2

1A2A3⟩c + ⟨A1A2⟩c⟨A1A3⟩c
}
+O(j31 ).

(17)

In the above, the term ⟨A2
1A2A3⟩c turns out to be higher

order when we explicitly compute it employing the per-
turbation theory calculation, and is roughly proportional
to O(P 3

lin). We thus drop the higher-order contribution,
and collect the leading and next-to-leading order contri-
butions. Then, Eq. (16) can be recast as

P (S)(k, µ) = DFoG[kµ f σv]
{
Pδδ(k) + 2 f µ2 Pδθ(k)

+ f2 µ4 Pθθ(k) +A(k, µ) +B(k, µ)
}
. (18)

Here, we replaced the exponential prefactor
exp{⟨ej1A1⟩c} with the damping function DFoG.
The corrections A and B are respectively given by

A(k, µ) = j1

∫
d3x eik·x ⟨A1A2A3⟩c,

B(k, µ) = j21

∫
d3x eik·x ⟨A1A2⟩c ⟨A1A3⟩c.

In terms of the basic quantities of density δ and velocity
divergence θ = −∇v/(aHf), they are rewritten as

A(k, µ) = (kµ f)

∫
d3p

(2π)3
pz
p2

× {Bσ(p,k − p,−k)−Bσ(p,k,−k − p)} , (19)

B(k, µ) = (kµ f)2
∫

d3p

(2π)3
F (p)F (k − p) ; (20)

F (p) =
pz
p2

{
Pδθ(p) + f

p2z
p2

Pθθ(p)

}
,

where the function Bσ is the cross bispectra defined by

〈
θ(k1)

{
δ(k2) + f

k22z
k22

θ(k2)

}{
δ(k3) + f

k23z
k23

θ(k3)

}〉

= (2π)3δD(k1 + k2 + k3)Bσ(k1,k2,k3). (21)

In deriving the expression (18), while we employed the
low-k expansion, we do not assume that the terms Ai

themselves are entirely small. In this sense, the expres-
sions (18), (19) and (20) still have some non-perturbative
properties, although the new corrections A and B ne-
glected in the previous phenomenological models are ex-
pected to be small, and can be treated perturbatively.
In Appendix A, based on the standard PT treatment,
we summarize the perturbative expressions for the cor-
rections (19) and (20), in which the three-dimensional
integrals are reduced to the sum of the one- and two-
dimensional integrals.

FIG. 4: Contributions of power spectrum corrections com-
ing from the A and B terms divided by the smooth refer-
ence power spectrum, P (S)

ℓ,corr(k)/P
(S)
ℓ,no-wiggle(k) (Eq. (22)). We

adopt the Gaussian form of the damping function DFoG with
σv computed from linear theory (see Eq.(7)). Left and right
panels respectively show the monopole and quadrupole power
spectra at redshifts z = 3 and 1.

To see the significance of the newly derived terms A
and B, we evaluate the monopole and quadrupole con-
tributions to the functions defined by

P (S)
ℓ,corr(k) ≡

2ℓ+ 1

2

∫ 1

−1
dµ DFoG(kµfσv)

⎧
⎨

⎩

A(k, µ)

B(k, µ)

⎫
⎬

⎭ .

(22)

The results are then plotted in Fig. 4, divided by the

smoothed reference spectrum, P (S)
ℓ,no-wiggle(k). In plotting

the results, we specifically assume the Gaussian form of
DFoG, and adopt the linear theory to estimate σv (see
Eq. (7)).
The corrections coming from the A term show oscilla-

tory behaviors, and tend to have a larger amplitude than
those from the B term. While the corrections from the
B term are basically smooth and small, they still yield
a non-negligible contribution, especially for quadrupole
power spectrum. Although the actual contributions of
these corrections to the total power spectrum are deter-
mined by the fitting parameter σv, and thus the resul-
tant amplitudes shown in Fig. 4 do not simply reflect
the correct amplitudes, the new corrections A and B can
definitely give an important contribution to the acoustic
feature in power spectrum.
Finally, it is interesting to note that while the new for-

mula for redshift-space power spectrum (18) would be
applicable to the non-linear regime where the standard
PT calculation breaks down, the resultant expression it-
self is similar to the one for redshift-space power spec-
trum in the one-loop standard PT. The one-loop power

spectrum in redshift space, P (S)
SPT(k, µ) given at Eq. (5),
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j1, we have

⟨ej1A1A2A3⟩c + ⟨ej1A1A2⟩c⟨ej1A1A3⟩c
≃ ⟨A2A3⟩+ j1⟨A1A2A3⟩c

+ j21

{1

2
⟨A2

1A2A3⟩c + ⟨A1A2⟩c⟨A1A3⟩c
}
+O(j31 ).

(17)

In the above, the term ⟨A2
1A2A3⟩c turns out to be higher

order when we explicitly compute it employing the per-
turbation theory calculation, and is roughly proportional
to O(P 3

lin). We thus drop the higher-order contribution,
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P (S)(k, µ) = DFoG[kµ f σv]
{
Pδδ(k) + 2 f µ2 Pδθ(k)

+ f2 µ4 Pθθ(k) +A(k, µ) +B(k, µ)
}
. (18)

Here, we replaced the exponential prefactor
exp{⟨ej1A1⟩c} with the damping function DFoG.
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A(k, µ) = j1

∫
d3x eik·x ⟨A1A2A3⟩c,

B(k, µ) = j21

∫
d3x eik·x ⟨A1A2⟩c ⟨A1A3⟩c.
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∫
d3p

(2π)3
pz
p2

× {Bσ(p,k − p,−k)−Bσ(p,k,−k − p)} , (19)

B(k, µ) = (kµ f)2
∫

d3p

(2π)3
F (p)F (k − p) ; (20)

F (p) =
pz
p2

{
Pδθ(p) + f

p2z
p2

Pθθ(p)

}
,

where the function Bσ is the cross bispectra defined by

〈
θ(k1)

{
δ(k2) + f

k22z
k22

θ(k2)

}{
δ(k3) + f

k23z
k23

θ(k3)

}〉

= (2π)3δD(k1 + k2 + k3)Bσ(k1,k2,k3). (21)

In deriving the expression (18), while we employed the
low-k expansion, we do not assume that the terms Ai

themselves are entirely small. In this sense, the expres-
sions (18), (19) and (20) still have some non-perturbative
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glected in the previous phenomenological models are ex-
pected to be small, and can be treated perturbatively.
In Appendix A, based on the standard PT treatment,
we summarize the perturbative expressions for the cor-
rections (19) and (20), in which the three-dimensional
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a non-negligible contribution, especially for quadrupole
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these corrections to the total power spectrum are deter-
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tant amplitudes shown in Fig. 4 do not simply reflect
the correct amplitudes, the new corrections A and B can
definitely give an important contribution to the acoustic
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with corrective term :
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FIG. 2: Ratio of power spectra to the smoothed reference spectra in redshift space, P (S)
ℓ (k)/P (S)

ℓ,no-wiggle(k). Left, middle,
and right panels respectively show the monopole (ℓ = 0), quadrupole (ℓ = 2) and hexadecapole (ℓ = 4) contributions to the
redshift-space power spectrum. N-body results are taken from the wmap5 simulations of Ref. [45]. The reference spectrum

P (S)
ℓ,no-wiggle is computed with the no-wiggle approximation of the linear transfer function [49], taking account of the linear

theory of the Kaiser effect. Long-dashed and solid lines respectively indicate the results based on the RegPT calculations
at one- and two-loop orders, adopting the Gaussian (thin) and Lorentzian (thick) form of the damping functions. Triangles
and squares in middle and right panels are also obtained from the same calculation at one- and two-loop orders, but taking
account of the effect of finite grid-size for the power spectrum measurement in N-body simulations (see text and Appendix B in
detail). For comparison, the 1-σ statistical errors of the hypothetical survey with volumes V = 5h−3 Gpc3 and number density
n = 5 × 10−4 h3 Mpc−3 are estimated from Eq. (35), and are depicted as green shaded regions around the N-body results at
z = 0.35 and 1.

plot the results with standard PT calculations in dotted
lines. Compared to the standard PT results, the coeffi-
cients of the A term are slightly enhanced at the two-loop
order, and the oscillatory feature originating from the
BAOs is somewhat smeared. This is similar to what we
saw in the real-space power spectrum. Fig. 1 apparently
indicates that at the two-loop order, the A term seem to
eventually dominate the total power spectrum at small
scales. However, this is actually not true. Because of
the exponential cutoff generically appeared in the multi-
point propagators, the amplitudes of both the A and B
terms are suppressed at small scales, as similarly seen
in the power spectra of the density and velocity fields.
This regularized UV property enables us to give a con-
vergent result for the correlation function, although, as a
trade-off, the prediction of redshift-space power spectrum
eventually becomes inappropriate at some small scales.

Now, let us compare the predictions of redshift-space
power spectrum with those of the N -body simulations in
greater detail, and investigate the extent to which the PT
model reproduces the simulation results. Fig. 2 plots the
ratio of power spectra to the smooth reference spectra,

P (S)
ℓ (k)/P (S)

ℓ,no-wiggle(k), where P (S)
ℓ,no-wiggle(k) is the linear

power spectrum computed with the no-wiggle formula of

Ref. [49]. The power spectrum P (S)
ℓ is the ℓ-th order

moment of the redshift-space power spectrum defined by

P (S)
ℓ (k) =

2ℓ+ 1

2

∫ 1

−1
dµP (S)(k, µ)Pℓ(µ), (33)

FIG. 3: Fitted values of σv as function redshift. Triangles and
squares are respectively obtained by fitting the one- and two-
loop PT predictions of the monopole and quadrupole spec-
tra to those obtained from the N-body simulations. Open
(filled) symbols are the fitting results adopting the Gaussian
(Lorentzian) form of the damping function in the theoreti-
cal predicitons [see Eq. (34)]. For reference, we also plot the
linear theory prediction in solid line.

with Pℓ being the Legendre polynomials. In Fig. 2, the
results of the monopole (ℓ = 0), quadrupole (ℓ = 2),
and hexadecapole (ℓ = 4) power spectra are respectively
shown from left to right panels. Here, the dashed and
solid lines are the results based on the RegPT calcu-
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FIG. 4: Redshift-space correlation functions around the baryon acoustic peak. Monopole (ℓ = 0), quadrupole (ℓ = 2), and
hexadecapole (ℓ = 4) moments of the redshift-space correlation function are respectively shown in left, middle and right panels.
Dotted lines are the linear theory predictions, while the dashed and solid lines respectively represent the results based on the
RSD model using the RegPT up to the one- and two-loop orders, adopting the Gaussian (thin) and Lorentzian (thick) damping
function.

FIG. 5: Redshift-space correlation functions at small scales. Plotted results are the ratio of correlation function to the linear
theory predictions taking account of the linear Kaiser factor, i.e., ξ(S)ℓ (s)/ξ(S)ℓ,lin(s). For clarity, we artificially shift the results
at each redshift by a constant value (indicated by the horizontal dotted line). Symbols and line types are the same as those in
Fig. 2. The green shaded regions at z = 0.35 and 1 indicate the expected 1-σ error of the hypothetical galaxy survey with the
volume V = 5h−3 Gpc3 and number density n = 5× 10−4 h3 Mpc−3.

previous studies neglecting A and B terms [35], in which
the power spectra, Pδδ, Pδθ and Pθθ, are computed with
closure theory. Now with the coherent treatment with
RegPT, the model successfully describes the correlation
functions around the baryon acoustic peak. The results
show that at large-scales, the choice of the damping func-
tion hardly change the prediction, and both the one- and
two-loop predictions almost coincide each other.

Let us look at the small-scale behaviors beyond the
baryon acoustic scales. Fig. 5 shows the ratio of
the correlation functions to the linear theory predic-

tions, ξ(S)ℓ (s)/ξ(S)ℓ,lin(s), specifically focusing on the scales

10 h−1Mpc≤ s ≤ 80 h−1Mpc. Note that the linear the-

ory prediction ξ(S)ℓ,lin is made with the linear power spec-
trum taking only account of the linear Kaiser effect. As
references, we also consider the hypothetical galaxy sur-
vey, and show the 1-σ statistical errors at z = 0.35 and 1,
depicted as green shaded region. This is estimated from

[∆ξ(S)ℓ (s)]2 =
2

V

∫
dk k2

2π2
{jℓ(k s)σP,ℓ(k)}2 (38)

with σP,ℓ defined in Eq. (36). Here, we adopt the same
survey parameters as we considered in Fig. 2.
As anticipated from the power spectrum results, the

predictions for both the monopole and quadrupole mo-
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z-space bispectra

that is, the displacement vector in redshift space is Ψs(q) = Ψ(q) + ẑf(Ψ(q) · ẑ).
Fourier transforming the corresponding expression to Eq. (618) in redshift space, the
power spectrum gives

P (k) =

∫

d3q exp(ik · q) ⟨ exp(ik ·∆Ψ) ⟩, (619)

where ∆Ψ = Ψ(q1)−Ψ(q2) and q = q1−q2. For Gaussian initial conditions, the
ZA displacement is a Gaussian random field, so Eq. (619) can be evaluated in terms
of the two-point correlator of Ψ(q). The results of these calculations show that the
ZA leads to a reasonable description of the quadrupole to monopole ratio [220, 642]
provided that the zero-crossing scale is fixed to agree with numerical simulations. In
general, the ZA predicts a zero-crossing at wavenumbers larger than found in N-body
simulations [301]. Furthermore, although the shape of the quadrupole to monopole
ratio resembles that in the simulations, the monopole and quadrupole do not agree as
well as their ratio. This can be improved by using second-order Lagrangian PT [571],
but the calculation cannot be done analytically anymore, instead one has to resort to
numerical realizations of the redshift-space density field in 2LPT.

7.4.3 The Redshift-Space Bispectrum

Given the second-order PT kernel in redshift-space, the leading-order (tree-level) galaxy
bispectrum in redshift-space reads [313, 669, 562]

Bs(k1,k2,k3) = 2Z2(k1,k2) Z1(k1) Z1(k2) P (k1) P (k2) + cyc., (620)

which can be normalized by the power spectrum monopole to give the reduced
bispectrum in redshift space, Qs,

Qs(k1,k2,k3) ≡
Bs(k1,k2,k3)

a20 (Pg(k1) Pg(k2) + cyc.)
, (621)

where “cyc.” denotes a sum over permutations of {k1, k2, k3}. Note that Qs is
independent of power spectrum normalization to leading order in PT. Since, to leading
order, Qs is a function of triangle configuration which separately depends on Ωm, b,
and b2, it allows one in principle to break the degeneracy between Ωm and b present in
measurement of the power spectrum multipoles in redshift space [236, 313]. The addi-
tional dependence of (the monopole of)Qs onΩm brought by redshift-space distortions
is small, typically about 10% [313]. On the other hand, as expected, the quadrupole of
Qs shows a strong Ωm dependence [562].

Decomposing into Legendre polynomials, Bs eq(µ) =
∑∞

ℓ=0 B(ℓ)
s eq Pℓ(µ), the

redshift-space reduced bispectrum for equilateral configurations reads [562]
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Figure 48: The left panel shows the bispectrum in redshift space for configurations
with k2 = 2k1 as shown as a function of the angle θ between k1 and k2. The dotted
line shows the predictions of second-order Eulerian PT, whereas the solid lines corre-
spond to 2LPT. Error bars correspond to the average between 4 realizations. The right
panel shows the bispectrum in redshift space for configurations with k2 = 2k1 = 1.04
h/Mpc, i.e. in the non-linear regime. Square symbols denote Q in real space, whereas
triangles denote the redshift-space bispectrum. Also shown are the predictions of PT in
real space (dashed lines), PT in redshift space (PTs, dotted line) and the phenomeno-
logical model with σv = 5.5, ( PT+σv , continuous line).

configuration dependence of the triplet velocity dispersion. As noted above, σv is de-
termined from simulations solely using the power spectrum ratio; the parameter α is
then fitted by comparison with the monopole-to-quadrupole ratio of the equilateral bis-
pectrum measured in the simulations [562]. A somewhat different phenomenological
model can be found in [669]; in addition [435] studies using a similar phenomeno-
logical model the effects of redshift-space distortions in the nonlinear regime for the
three-point correlation, assuming the validity of the hierarchical model in real space.

The right panel in Fig. 48 shows the redshift-space bispectrum at small scales, to
show the effects of non-linear redshift distortions. The square symbols denote Q is
real space, which approximately saturates to a constant independent of configuration.
On the other hand, the redshift-space Q shows a strong configuration dependence, due
to the anisotropy of structures in redshift space caused by cluster velocity dispersion
(fingers of God). The phenomenological model (with σv = 5.5 and α = 3) in solid
lines does quite a good job at describing the shape dependence of Qs.

Similar studies using numerical simulations have been carried out in terms of the
three-point correlation function, rather than the bispectrum, to assess the validity of the
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A concluding slide
The missing ingredients:

- massive neutrinos (should be OK as they account for only 
a small fraction of the energy density; can also be 
incorporated in the same framework).

- dark energy fields: very model dependent, see Martin’s talk

- covariances :                     is now expected to be a non-
diagonal matrix. 

- Note that one should also compute similar quantities for 
higher order observables such as bispectra (or other 
observables)

- construction of a theory of the theoretical error !

hP̂l1(k1) P̂l2(k2)i



Weak lensing case�
Sato+09 (used 1000 realizations)�•  The information 

content of WL power 
spectrum is 
(significantly) smaller 
than the Gaussian 
expectation (also see 
Lee & Pen 08; MT & 
Jain 09; Yu+09) !

•  The power spectrum is 
not enough in WL case!

•  Where is the 
information contained 
in the initial field gone? 
The initial information 
is lost? !

 �

Information lost is more significant 
for lower source redshifts�

•The ‘’information’’ 
content of WL power 
spectrum is 
(significantly) smaller 
than the Gaussian 
expectation (Sato et al., 
’09) 

• Where is the 
information gone ?

Information content of WL power spectrum 
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Figure 10. Cumulative S/N for the power spectrum (P ), the bispectrum (B) and the joint measurement (P + B) for a survey area of 25 deg2 and source
redshift zs = 1. They are shown as functions of the maximum multipole lmax, where the power spectrum and/or bispectrum information are included over
lmin ! l ! lmax (see equations 27, 28 and 31). The minimum multipole is set to lmin = 72. We do not include the shape noise contamination here – it is
shown in the next figure. The circle, triangle and square symbols are the simulation results for P , B and P + B measurements, respectively, computed from
the 1000 realizations. The thick short-dashed, long-dashed and solid curves are the corresponding halo model predictions. The corresponding thin curves are
the results without the HSV contributions. For comparison, the dotted curve shows the S/N for the power spectrum for the Gaussian field, which the primordial
density field should have contained. Note that the simulation results for B and P + B could be overestimated by about 10 per cent due to a finite number of
the simulation realizations used to estimate the covariance matrices (Hartlap et al. 2007).

the simulation results for the S/N of the power spectra, the bispectra and the joint measurements, respectively, which are computed using
the 1000 realizations. The thick/thin short-dashed, long-dashed and solid curves are the halo model predictions with/without the HSV terms.
First of all, the lensing bispectra add new information content to the power spectrum measurement. To be more quantitative, adding the
bispectrum measurement increases the S/N by about 50 per cent for lmax ≃ 103 compared to the power spectrum measurement alone.
Note that the lmax of a few thousands is the typical maximum multipole for upcoming weak lens surveys. This improvement is equivalent
to about 2.3 larger survey area for the power spectrum measurement alone; that is, the same data sets can be used to obtain the additional
information, if the bispectrum measurement is combined with the power spectrum measurement. Secondly, the halo model predictions are
in nice agreement with the simulation results. Note that the total S/N for the joint measurement (P + B) is close to the linear sum of the
S/N values ((S/N)P and (S/N)B), not the sum of their squared values (S/N)2, due to the significant cross-covariance between P and B (see
Appendix C in Takada & Bridle 2007, for the similar discussion). If ignoring the cross-covariance, adding the bispectrum measurement does
not much improve the S/N (only by 5 per cent or so). Hence it is important to take into account the correlation between the two measurements.

Next, let us compare the result above with the case of a Gaussian random field, which is shown in the dashed curve in Fig. 10. The S/N
for a Gaussian field is equivalent to the number of independent Fourier modes up to a lmax for a given survey area. The figure clearly shows
that the joint measurement of the power spectrum and the bispectrum does not recover the full information content of the Gaussian field. This
implies that the higher-order statistics beyond the bispectrum are also important to recover the full information content. One may argue that
the initial memory of the field cannot be recovered due to the non-linear structure formation. However, we would like to note that, if ignoring
the HSV contribution to the covariance, adding the bispectrum can recover about 75 per cent of the Gaussian information, as shown by the
thin curves. Hence the loss of the information contents is mostly due to the the HSV contribution. As discussed in Section 3.4, the HSV alters
the overall amplitude but preserves the shape of the lensing spectra. Hence the HSV may give the worst case degradation of the amplitude
parameter, but may not cause any serious degradation of parameters that are sensitive to the shapes of the lensing spectra. A genuine impact
of the HSV on cosmological parameters needs to be further studied and this is our future work.

In Fig. 11 and Table 1, we show the S/N expected for the upcoming wide-field weak lensing surveys, the Subaru Hyper Suprime-Cam
(HyperSC) survey and the DES, which are characterized by the survey area, the mean source redshift and the mean number density of source
galaxies of Ωs = 1500 sq. degrees, z̄s = 1 and n̄g = 20 arcmin−2 for the HyperSC survey, while Ωs = 5000 deg2, z̄s = 0.7 and
n̄g = 10 arcmin−2 for the DES, respectively. Here we employ the halo model to compute the S/N and assume a circular survey geometry
for simplicity. The figure and table show that these surveys promise a significant detection of the lensing bispectrum; (S/N) ≃ 26 or 29 for
the HyperSC or the DES, respectively, when assuming lmax ≃ 2000 and including the shot noise effect. It also means that the theoretical
prediction of the lensing bispectrum needs to be as accurate as a few per cent for the upcoming surveys. We find that the bispectrum adds

(Kayo, Takada & Jain 2012)

Information content of WL power spectrum and bispectrum


