Lectures

THE LARGE SCALE DISTRIBUTION OF GALAXIES

Observational facts

Olivier Le Fèvre – Cosmology Summer School 2016

Lecture plan

Part 1: Deep large scale galaxy surveys Part 2: The Universe on large scales

- Large scale structures observations
- Measuring clustering: the correlation function (and power spectrum)

Part 3: Baryon Acoustic Oscillations and Redshift space distortions

Part 4: The Euclid Surveys and galaxy clustering

Building of the LSS

The large-scale structure of the Universe evolves through the competing effects of cosmological expansion and structure growth

t=13.8 Gyr

Halo & galaxy bias

Classical picture

Kaiser 1984 Bardeen et al. 1986 Cole & Kaiser 1989 Mo & White 1996

- Large-scale density fluctuations modulate the number density of local density peaks, bringing the highest above the critical density for collapse (δ_c =1.686 in EdS model)
- Halo large-scale bias described as $b=1+(v^2-1)/\delta_c$: rare objects (most massive) exhibit a higher bias But, halo \iff galaxy?
- Large-scale linear bias:
 - Valid only on large scales

$$b\equiv \delta_g/\delta$$

From de la Torre (Les Houches 2016)

Galaxies

Use galaxies as a tracer of the matter field

Millennium Run (Springel et al. 2005)

Z=0

Part 1

DEEP LARGE SCALE GALAXY SURVEYS: METHODS

Olivier Le Fèvre - Cosmology Summer School 2016

Outline

- 1. Designing a deep survey
- 2. Instruments for deep surveys
- 3. Observational methods
- 4. Data processing
- 5. Databases and information systems
- 6. Comparing surveys

Cosmological probes

- Measurements sensitive to the « cosmological parameters » of the world model
 - Geometry: standard rods
 - Content: mass of the different components
- Need to combine several cosmological probes to fully constrain the full set of parameters

Probes → Surveys (Euclid = a BIG survey)

What are "deep surveys" ?

Deep galaxy surveys are observations of a part of the sky, assembling representative samples of galaxies from well defined selection criteria

Two types of complementary surveys:

- Deep photometric surveys
- Deep spectroscopic redshift surveys

Surveys rely on large number statistics

Surveys are used for:

- Galaxy formation and evolution
- Measuring cosmological parameters

Surveys = polls

- Ask the opinion of 1 person: always wrong
- Ask 10 persons: strong biases
- Ask 100 persons: some biases
- Ask 1000 persons: average is probably close to truth
- Votes from the whole population make the truth

Designing a survey

- Science goals & strategy
- Survey parameter space
- Instrumentation
- Survey examples

How are galaxy surveys designed ?

The 'Wedding cake' approach

Deep / small field

Medium / large field

Shallow / all-sky

Some Principles

- Surveys need to be unbiased
 - Volume, luminosity/mass, type, environment...
 - Proper photometric catalogs
- Statistically robust
- Complete census

- Selection function control
 - Apriori hypotheses

- Large deep imaging surveys
- Large samples
- Multi-wavelength

2 types of surveys: photometric and spectroscopic

Science goals: the starting point

- What are the science questions addressed by the survey ?
- What are the measurements to be performed ?
- What is the desired accuracy ?

Cosmology-clustering: BAO RSD Cosmology: SNe, WL, Clusters...

Galaxy formation & evolution: Merging, accretion, feedback,...

As a function of z...

Survey parameter space

Survey volume

- Volume \propto Area \times dz
- Area depends on telescope+instrument
 Etendue AΩ
- Instantaneous volume and tiling
 - One instrument pointing necessarily limited in area
 - Need tiling to implement survey

Single pointing footprint: Megacam @CFHT

Whole sky tiling: Euclid

Etendue

- An instrument system is more efficient when the *Etendue* is larger
- Etendue: the area of the entrance pupil (telescope collecting area) times the solid angle the source $E=A\Omega$

A Ω : a key element in instrument systems

- A = telescope collecting area
- Ω= telescope+instrument field of view
- The larger the AΩ, the more information can be accessed

These instrument systems have the same efficiency

Telescope φ	ım	4m CFHT	8m VLT	40m ELT
Field of view	1 deg²	o.o8 deg²	0.02 deg ²	0.0008 deg ²
AΩ	1	1	1	1

Survey depth

- Depends on
 - Telescope diameter
 - Instrument throughput (optical efficiency)
 - Exposure time
 - Detector noise
 - Background

Source Background

Detector Noise

Det. Dark current

Survey redshift range

The redshift range will determine the wavelength range (and vice-versa)

Survey spectral resolution

- Ability to separate spectral features
- R=λ/dλ
- The higher R, the better is the velocity resolution, or velocity accuracy
- Choice depends on the spectral features you are interested into
 - Broad features (e.g. because of velocity dispersion) or narrow
- Directly linked to wavelength coverage in instrument design

Survey number of objects

A key number: 10⁵ objects

Why ?

Nobj ?? ~10⁵ !!

- Study evolution vs. Luminosity, color (type), environnement
- Minimise cosmic variance effects: survey several independant fields
- Several time intervals to follow evolution
- 50 galaxies per measurement bin
- Total number of galaxies: $50 \times 10 \times 3 \times 3 \times 4 \times 7 > 100000$

per bin mag.bin colors env. fields time steps

Science vs. parameter space: matrix

Science Goals	Survey parameters				
	Area	λ-range microns	Spectral R	Mag. Lim.	Nobj
Goal 1	1 deg²	0.36-1	250	24.5	10000
Goal 2	o.5 deg²	0.55-1	1000	25	6000
Goal 3	3 deg²	0.35-0.8	250	24	50000

Compile all science goals into one single survey observing strategy

Examples of spectroscopic survey design

Survey	Survey Design Parameters					
	Area	λ-range microns	z-range	Spectral R	Mag. Lim.	Nobj
SDSS-III	10000 deg²	0.36-0.9	0-0.5	2000	18	10 ⁶
VVDS-Wide	8 deg²	0.55-1	0-1.5	250	22.5	22500
VVDS-Deep	1 deg²	0.55-1	0-5	250	24	12500
VIPERS	25 deg²	0.5-1	0.5-1.5	250	24	10 ⁵
VUDS	1 deg²	0.36-1	2-6+	250	25	104
PFS	1400 deg²	0.4-1.3	0.5-7	3500	25	3×10 ⁶
DESI	14000 deg ²	0.4-1	0-1.6	4000	19.5	25×10 ⁶
Euclid	15000 deg²	0.95-1.8	0.8-2	300	(22)	50×10 ⁶
WFIRST	2200 deg ²	1.35-1.9	1.1-2.7	500	(23)	20×10 ⁶

Which instrument for my survey ?

- Imaging or spectroscopy ?
- Need both !

Imaging cameras

- Based on CCDs for the visible domain
- Based on HgCdTe arrays for 1-5 microns
- Other hybrid detectors in UV and to ~25 microns
- Radio and sub-mm recievers
- X-ray cameras

Key elements

- Field of view
- Wavelength domain
- Spatial resolution
- Throughput / Quantum efficiency

Visible cameras: CFHT 3.6m+Megacam

MegaCam: 256 millions pixels

Parameter	Value
Field of view	ı deg²
λ -range	0.33-1 microns
Pixel scale	0.2 arcsec
Filters	ugriz

IR cameras: on 4m VISTA at ESO

Parameter	Value
Field of view	o.6 deg²
λ -range	o.8-2.5 microns
Pixel scale	o.34 arcsec
Filters	ҮЈНК

HST imaging

ACS

Parameter	Value
Field of view	11 arcmin ²
λ -range	0.35-1 microns
Pixel scale	o.o5 arcsec
Filters	Ubvriz-like

The best resolution

- The best sensitivity
- The smallest field

WFC₃

Parameter	Value
Field of view	4.6 arcmin ²
λ -range	0.8-1.7 microns
Pixel scale	0.13 arcsec
Filters	zYJH

Efficiency of imaging cameras

Optical filters, are interference filters, selectively transmit light in a given bandpass, while blocking the remainder.

Imaging systems have a high throughput (efficiency in catching photons)

Limiting magnitudes in imaging

- Depend a lot on the wavelength
 - Optics throughput and detector quantum efficiency
 - Background

MOS: multi-object spectrographs

- A key invention for Cosmology !
- Principle: observe more than one object at once
 - Multiplex N_{obj}
- The multiplex is like having N_{obj} telescopes each observing 1 object
- Different types of MOS
 - Multi-slit: better sky subtraction
 - Multi-fiber: wide field
 - Multi-IFU: velocity fields

Key elements

- Field of view
- Wavelength domain
- Spectral resolution
- Multiplex
- Throughput

Spectra, one by one

E. Hubble

Multi-object spectroscopy

Deep multi-color imaging

- Target selection
- Multi-object spectroscopy

Today MOS have N_{obj} >> 100 Multiplies the efficiency of your telescope by N_{obi} !
Multi-Object Spectrograph have become the work-horse of many observatories

- In all major observatories: SDSS survey, CFHT-MOS/SIS, Keck-LRIS, VLT-FORS, GMOS, Keck-DEIMOS, VLT-VIMOS, IMACS ...
- Now going to the IR: MOSFIRE, VLT-KMOS

VIMOS on the VLT

Parameter	Value
Field of view	220 arcmin ²
Apertures	Slit mask
λ -range	0.36-1 microns
Pixel scale	0.2 arcsec
Filters	Ugriz
Spectral R	250-2500
Number of slits	~600

E

Most efficient MOS Produced high-z cosmology surveys

DEIMOS on Keck

Parameter	Value
Field of view	80 arcmin ²
Apertures	Slit mask
λ -range	0.42-1 microns
Pixel scale	0.1 arcsec
Filters	BVRIZ
Spectral R	1500-5000
Number of slits	~120

SDSS spectrograph

Parameter	Value
Field of view	7 deg²
Apertures	Fibers
λ -range	0.38-92 microns
Fiber size	3 arcsec
Spectral R	2000
Number of fibers	~600

MOS in the IR: MOSFIRE on Keck

Parameter	Value	2		No.					
Field of view	45 arc	cmin ²			Mai				IT
Apertures	Move	able slits				Z			
λ -range	0.8-2.	5 microns							
Pixel scale	0.1 ar	csec		-	- 11				
Filters	YJHK								
Spectral R	2000-	5000		17	• 56	JA-	17		
Number of slits	45		- 1		tin - Le				
		Note stars in alignment boxes and in 0.7" slits!							
			Maria ang sa Ang sa Ang sa	. • 1			Difference exposure along slit	e of two s, positio direction	120 s J-band ons +/- 1.5" from fiducial
			1						
		1600	1900	2000	2200		2400	2600	2800 30

Integral field spectroscopy: velocity fields MASSIV survey at

Z~1.5

Optical slicing of the on-sky image

Spectral dipersion of the sliced image

4

Computer reconstruction of the 3D data cube

3

Spatial in X

Spatial in

1

Computer reconstructed image

MUSE on VLT: largest IFS

Large Field (for an IFS): 1x1 arcmin²

Finds faint emission line galaxies (not seen by Hubble)

Slitless spectrographs

- Insert a prism (grism) in the beam: all objects produce a dispersed spectrum
- Pros: all objects get a spectrum
- Cons:
 - Geometric superimposition
 - Higher background
- Recent example: 3D-HST survey with the WFC3 camera on HST (600 arcmin²)

EUCLID NISP will do a slitless survey of 15000 deg²

Instrument design and development

- Instrument making is fundamental to astrophysics
- Relies on new & improved technology
 - Optics, detectors, mechanics, control (active)
 - Space technology
 - Software: data processing, databases
- Professional project development
 - Skilled instrument scientists and specialty engineers
 - Project management
- Expensive telescopes (~1G€) and instruments (~15-80M€ ground-based / ~150M€ space-based)

Instrument development cycle

- Define science goals: science requirements
 - Survey volume, number of objects, redshift
- Derive technical requirements
 - Field of view, wavelength, resolution, throughput
 - Global performances
- Produce strawman opto-mechanical design
- Identify new technology developments: grating, detectors,...
 - Produce prototypes
- Manufacture all parts
- Assembly, integration and tests
 - Measure performances, calibrate
- First light

SPACE instruments: 2x longer !

 T_{o}

T₀+2y

T_o+4y T_o+5y

T_o+6-7y

Preparing future instrumentation for surveys

- Ground
 - PFS
 - DESI
 - LSST
 - ELTs
- Space
 - JWST
 - Euclid
 - WFIRST

Observational methods

- Sample selection
- Observations preparation and follow-up
- Measuring the sample selection function

Sample selection

- Magnitude or flux selection
- Color selection
- Color-color selection
- Photometric redshift selection
- Line flux selection (H α , Ly α ,...)

Magnitude / flux selection

Observe all galaxies brighter than a limit

Here: I_{AB}≤24

Color selection

- Apply a color cut
- Color=difference between two photometric bands
- Here (magenta) select the red galaxies with M_u-M_r>1.4
- Can add a magnitude selection on top (green): select all red and bright galaxies

Color-color selection

- Select objects in a part of a color-color diagram
- Most known: Lymanbreak galaxy selection (LBG)
- Here is shown a gzK diagram to select galaxies at z~2

Lyman-break galaxy selection

 Use predicted galaxy tracks vs. Redshift to isolate galaxies in color-color space

Different types of galaxies

Photometric redshifts

- Photo-z is a redshift derived from photometric data
- Uses the SED (Spectral Energy Distribution)
- Correlate against a set of templates
- Same process gives *-mass, SFR, age, etc.
- Accuracy δz~3-5%
 Probability distribution function
- Pb of catastrophic redshifts

$\mbox{H}\alpha$ selection

- Hydrogen Hα transition 6562Å: the strongest emission at optical wavelengths
- Direct tracer of star formation rate
- Hα Flux selected survey: equivalent to a selection of starforming galaxies
- Pros: strong emission easy to detect
- Cons:
 - Traces star-forming galaxies only
 - Degeneracies with other (single) line emitters: Oll-3727, Lyα-1215

EUCLID-NISP survey will be H α -selected

Survey observations preparation and follow-up

- Produce a reference photometric catalog based on your selection
 - The "parent catalog"
- Produce a list of objects to be observed
 - Satisfying your selection criteria
- Anticipate the geometric constraints of the instrument
- Produce a survey plan
 - Tilling to cover survey area
 - Exposure time, dithering
- Execute observations
- Follow with database

Observing blocks at VLT

File Ealt Syn	chronise FindingCharts						
Nama:	MAS SN19878		Template Type ····	Template	···		
ivanie.	MOD DIGIDONA		acquisition	uisition VIMOS_ifu_obs_Offs@		Adu	
Status:	(P)artiallyDefined		science	VIMOS_img_obs_Offs	MOS_img_obs_Offset		
			calib	VIMOS_mos_obs_Offs	et	Delete Col : 4	
* Execution Time	00:56:10.000		test				
	1					Duplicate Col : 4	
User Priority.	1		7				
OD Name:	LR blue Boffsets					Recalc ExecTime	
OD Name.							
User Comments:							
Instrument Comm	nents :						
VIMOS_n	nos_acq_Mask	1	VIMOS_m	os_obs_Offset		1	
Exposure time (se	conds)	60	Exposure time (see	conds)	600		
Additional Velocity	y RA	0	Number of Exposu	ires per Telescope O	1		
Additional Velocity DEC 0		0	Number of Telesco	Number of Telescope Offsets ?			
ADP File 1 vm_SN1987A_LR_Blue_M1Q1.adp		List of offsets (arcs	ec) along the slit	0 -2 3			
ADP File 2 vm_SN1987A_LR_Blu		vm_SN1987A_LR_Blue_M1Q2.adp	List of offsets (arcs	ec) perpendicular to	000		
ADP File 3		vm_SN1987A_LR_Blue_M1Q3.adp	Return to Origin ? ((T / F)	✓		
ADP File 4		vm_SN1987A_LR_Blue_M1Q4.adp	Filter		OS-blue		
Filter		R	Grism		LR_blue		

Resulting observations

4. Data processing

- Imaging and spectroscopy generate hundreds of Gb of data per night
- Process from raw uncalibrated data to instrument-corrected and calibrated data
- A very important step
- Data processing packages available for each instrument
 - Need to invest time before using them to the best

Measure spectroscopic redshifts

Identify observed spectral features to rest-frame known features

- Identify emission / absorption features
- Take continuum into account

Cross-correlation to galaxy templates (Tonry & Davis, 1979, AJ, 84, 1511)

EZ engine: Garilli et al., 2010, PASP, 122, 827

Euclid development in progress: AMAZED

5. Information system, Databases

- Data volume from surveys is huge, many Tb
- Information system: the management of all survey data
 - Data flow
- Includes all steps: from design to observations, to data processing, to final measurements
- Easy access to data
 - Query oriented
- Long term access, and reference
- Virtual observatory compatible

Follow the observations and data processing

VUDS All Pointings

Name	Epoch	RA	DEC	Q1	Q2	Q3	Q4	Readme
COSMOSP01	1	09:59:02.39	+01:54:36.0	Mesured	Mesured	Reduced[B+R]	Mesured	2
COSMOSP02	1	10:00:04.08	+01:54:36.0	Mesured	Mesured	Mesured	Reduced[B][R][B+R]	2
COSMOSP03	2	10:01:05.76	+01:54:36.0	Reduced[B][R][B+R]	Observed[B][R]	Reduced[B][R][B+R]	Reduced[B][R][B+R]	\triangleright
COSMOSP04	2	09:59:02.39	+02:12:41.4	Observed[B][R]	Reduced[B][R][B+R]	Reduced[B][R][B+R]	Reduced[B][R][B+R]	\triangleright
COSMOSP05	1	10:00:04.08	+02:12:41.4	Mesured	Mesured	Reduced[B][R][B+R]	Mesured	\triangleright
COSMOSP06	2	10:01:05.76	+02:12:41.4	Reduced[B][R][B+R]	Reduced[B][R][B+R]	Reduced[B][R][B+R]	Reduced[B][R][B+R]	\triangleright
COSMOSP07	1	10:00:04.08	+02:30:46.7	Reduced[B][R][B+R]	Mesured	Reduced[B][R][B+R]	Reduced[B][R][B+R]	\triangleright
COSMOSP08	2	10:01:05.76	+02:30:46.7	Reduced[B][R][B+R]	Reduced[B][R][B+R]	Reduced[B][R][B+R]	Observed[B][R]	2
ECDFS_P01	1	03:32:25.99	-27:41:59.9	Mesured	Mesured	Mesured	Mesured	2
ECDFS_P02	2	03:32:34.00	-27:53:59.9	Observed[B][R]	Observed[B][R]	Observed[B][R]	Observed[B][R]	2
VVDS02P01	1	02:26:44.51	-04:16:42.8	Mesured	Mesured	Mesured	Mesured	2
VVDS02P02	2	02:25:40.34	-04:16:42.8	Reduced[B][R][B+R]	Reduced[B][R][B+R]	Reduced[B][R][B+R]	Reduced[B][R][B+R]	2
VVDS02P03	2	02:26:44.51	-04:34:50.3	Reduced[B][R][B+R]	Reduced[B][R][B+R]	Reduced[B][R][B+R]	Reduced[B][R][B+R]	
VVDS02P04	2	02:25:40.34	-04:34:50.3	Reduced[B][R][B+R]	Mesured	Observed[B][R]	Reduced[B][R][B+R]	2
VVDS02P05	2	02:24:36.14	-04:44:57.9	Planned	Planned	Planned	Planned	2

	The Survey The Team News Data Products Observations handle		Observations handling	NUDS WIKI Public Site						
			S	Search by ger	eral criteria					
FIELD Spectroscopic Redshift			Z	min 3	min 3 max 3.3					
VVDS2H				z Flag pre-defined I	all primary	all primary objects with very reliable redshifts (zfag=3-4)				
⊖ COSMOS ⊖ ECDFS	Mag	nitude i _{AB}		max 25						
				Submit the reque	est Reset					
				View your r	esults					
Search by criteria :				2	3 objects selected					
• M • R • R	agl between 17.5 aı edshift Spectroscop edshift Spectroscop	nd 25 ic between 3 and ic quality flag in (3	3.3 3,4)							
Objects : 1 to 23 / 23 PREV NEXT	3 - Page 1/1						F	Page 1/1 REV NEXT		

Spectra	VUDSid ♦ ♦	ID_IAU ⇔	Alpha_J2000	Delta_J2000 ♠	2	Zflag ♠	pointing	quad	slit ≜	obj	Magi 🔶
÷.	520390210	VUDS-J022711.64-041828.23	36.798521	-4.307844	3.1183	3	F52P001	4	111	1	24.087
÷.	520393071	VUDS-J022715.88-04189.16	36.816174	-4.302547	3.2573	3	F52P001	4	132	1	24.734
1	520445512	VUDS-J022615.69-041234.26	36.565376	-4.209518	3.2583	3	F52P001	2	15	1	24.844

6. Measuring the selection function

- Estimate the ability of the survey to detect galaxies satisfying the selection criteria
- Target Sampling rate
 Which fraction of the galaxy population satisfying the criteria is observed
 - Masking bad regions
- Limiting magnitude
 - Limiting magnitude (at 5σ or at 90% completness)

Measuring the selection function

- Spectroscopic success rate
 - Fraction of targeted objects that deliver a measurement (redshift, line,...)
 - As a function of magnitude
 - As a function of redshift

 Selection function can be complex Sel(mag,z,type,α,δ)

6. Comparing surveys

- Not so easy because the selection functions can be very different
- Look at the parameter space
 - Nobj vs. Area and vs. Magnitude
 - Area vs. Magnitude

. . .

Nobj and Area vs. Redshift

Past and present deep spectroscopic surveys

Survey	Instrument	redshift	# galaxies
2dFGRS	2dF/AAT	0 <z<0.5< td=""><td>220000</td></z<0.5<>	220000
SDSS	SDSS/Apache Point	0 <z<0.5< td=""><td>930000</td></z<0.5<>	930000
CFRS – 1995	CFHT-MOS	0 <z<1.2< td=""><td>600</td></z<1.2<>	600
LBG – 1999	KECK-LRIS	2.5 <z<4.5< td=""><td>1000</td></z<4.5<>	1000
DEEP2, 2005+	KECK-DEIMOS	0.7 <z<1.4< td=""><td>50000</td></z<1.4<>	50000
VVDS, 2005+	VLT-VIMOS	0 <z<5< td=""><td>50000</td></z<5<>	50000
zCOSMOS, 2007+	VLT-VIMOS	0 <z<1.2 1.4<z<3< td=""><td>20000 10000</td></z<3<></z<1.2 	20000 10000
VIPERS, 2009+	VLT-VIMOS	0.5 <z<1.2< td=""><td>100000</td></z<1.2<>	100000
VUDS, 2010+	VLT-VIMOS	2.5 <z<6.7< td=""><td>10000</td></z<6.7<>	10000
GOODS	VLT FORS2	0 <z<7.1< td=""><td>1000</td></z<7.1<>	1000
		And more !	