Lecture plan

Part 1: Deep large scale galaxy surveys Part 2: The Universe on large scales

- Large scale structures observations
- Measuring clustering: the correlation function (and power spectrum)

Part 3: Baryon Acoustic Oscillations and Redshift space distortions

Part 4: The Euclid Surveys and galaxy clustering

Part 3

CLUSTERING: BARYON ACCOUSTIC OSCILLATIONS AND REDSHIFT SPACE DISTORTIONS

Olivier Le Fèvre – Cosmology Summer School 2016 With contribution from Sylvain de la Torre (Les Houches Cosmology School march 2016)

Outline

- 1. Cosmology from LSS
- 2. Baryon Accoustic Oscillations measurements
- 3. Redshift space distortions measurements
- 4. Constraints on cosmology from clustering

Cosmology from LSS

Cosmology from LSS

Cosmology from LSS

Galaxy Power spectrum

Baryon Acoustic Oscillations Galaxies CMB

Anderson et al. 2014

Clustering: Baryon Accoustic Oscillations

- Original hot, dense plasma of electrons and baryons
 - Short distances for photons as they interact via Thomson scattering
 - Oscillations from gravity and heat pressure of photon-matter interactions
- Recombination (z~1000): matter became neutral, photons propagate freely
 - Decoupling: pressure oscillations leave an imprint in the baryon distribution
- A <u>standard ruler</u>
 - Search for statistical imprint on galaxy distribution
- Compare to SNe: <u>standard candel</u>

Idealized

Statistical

A single perturbation in an uniform plasma. Uniform except for an excess of matter at the origin.

High pressure drives baryon-photon plasma outward at high speed. Baryons and photons move together.

Baryons

Photons

Mass profile

Expansion continues for about 10⁵ years

After 10⁵ years, the Universe has cooled enough so that photons stop ionizing atoms. Photons decouple from baryons. The former quickly streams away.

Baryons

Photons

Mass profile

Baryons having lost their motive pressure remain in place, the baryon peak is stalled.

Photons have become uniform, but baryons stay overdense in a shell of 150 Mpc in radius.

Further non-linear processes related to galaxy formation act to broaden and shift the peak on scales of 10-20 Mpc/h.

BAO as a standard ruler

What is expected ?

BAO measurements need spectral resolution

What has been found: SDSS

First detection in 2005

- ~46000 luminous red galaxies from SDSS-I
 - *z*~0.3
- Red luminous galaxies have a larger bias, hence stronger correlation, easier to measure CF

Eisenstein et al. 2005

Also from 2DFGRS *Cole et al. 2005*

2012: BOSS, SDSS-III/DR9

~260000 massive galaxies

■ *z*~0.57

Anderson et al. 2012

Reconstruction

100

150

200

BAO provides one of ulletthe most accurate geometrical constraints

Cosmological parameters: using BAO + Planck

Red: Planck Blue: Planck + BAO

Outline

- 1. Cosmology from LSS
- 2. Baryon Accoustic Oscillations measurements
- 3. Redshift space distortions measurements
- 4. Constraints on cosmology from clustering

Concordance ACDM

(e.g. Amanullah et al. 2010)

What is Dark Energy? What is the origin of cosmic acceleration?

Cosmic acceleration

$$R_{mn} - \frac{2}{2}g_{mn}R = -\frac{8\rho G}{c^2}T_{mn} + Lg_{mn}$$

...or modify gravity theory? Add dark energy

To distinguish these two radically different options: need to probe the dynamics of the Universe

The growth rate of structure depends on the strength of gravity

 $\delta^+(\overline{x},t) = \hat{\delta}(\overline{x})D(t)$

Structure growth rate:

Z=6

$$f = \frac{d\ln D}{d\ln a}$$

Z=2

(Credit: V. Springel)

Cosmic acceleration

The origin of cosmic acceleration is one the most important questions in cosmology today: Dark Energy or a modification of standard gravity theory?

→ Growth rate of structure f(z) crucial to break the degeneracy between cosmological models

Redshift-space distortions

- Large-scale peculiar velocities, gravity-driven coherent motions in velocity space
- Galaxy spatial distribution observed in galaxy redshift surveys, i.e. in redshift-space:

- Because of peculiar motions, redshift is not strictly a distance
- Observed in redshift-space the correlation function is "squashed" by structure growth hence sentivite to Gravity

Growth rate of structure

Redshift-space distortions

RSD are known for about 30 years... (Kaiser 1987)

Peacock et al. (2001), Nature RSD to measure Ω_m :

$$\beta = f/b = \Omega_m^{\gamma}/b$$

 ... but we realised its usefulness for probing gravity only less than 10 years ago!

> VVDS, Guzzo et al. (2008), Nature RSD to probe gravity : $\beta = f/b = \Omega_m^{\gamma}/b_L$

Recent RSD measurements

6dFGS Beutler et al. 2012 z=0.06 SDSS-III/BOSS Samushia et al. 2014 z=0.57 VIPERS de la Torre et al. 2013 z=0.8

Constraints on growth rate

VIPERS, de la Torre et al. 2013

 Current constraints in agreement with ACDM and Einstein gravity

Constraints on growth rate

Samushia et al. 2014

Current constraints in agreement with ACDM and *Einstein gravity*

Combined BAO and RSD

Combined BAO and RSD constraints on Dark Energy EoS

Chuang et al. 2014

The future of clustering analysis

- Correlation function: a powerful tool to probe galaxy (halo) evolution and cosmology
- CF with BAO and RSD has become a major tool to constrain the cosmological world model

Growth rate from next generation surveys

O Current measurements:

- Not accurate enough to distinguish between GR and modified gravity
- \bigcirc Restricted to z < 0.8, low redshifts intrinsically limited by volume

→ Need redshift surveys probing largest volumes at high redshift

Future Dark Energy surveys

• Massive effort today to prepare massive galaxy/quasar surveys to solve the problem of Dark Energy and the origin of late cosmic acceleration: *eBOSS*, *DES*, *PFS*, *Euclid*, *DESI*, *WFIRST*, ...

Future spectroscopic surveys

Spectroscopic Survey	Instrument	redshift	Field # galaxies	Start/end dates
eBOSS	Sloan 2.5m	0.5-1.5	106	2014-2017
PFS	Subaru 8m	0.5-2.7	1400 deg ² 3×10 ⁶	2019-2022
DESI	KPNO 4m	0.5-1.5 Gal.	12000 deg ² 50×10 ⁶	2019-2024
EUCLID	1.2m	0.5-2	15000 deg ² 50×10 ⁶	2021-2027
WFIRST	2.4m	1-3	2200 deg ² 16×10 ⁶	2024-

Lecture plan

Part 1: Deep large scale galaxy surveys Part 2: The Universe on large scales

- Large scale structures observations
- Measuring clustering: the correlation function (and power spectrum)

Part 3: Baryon Acoustic Oscillations and Redshift space distortions

Part 4: The Euclid Surveys and galaxy clustering

Part 4 THE EUCLID MISSION AND CLUSTERING

Olivier Le Fèvre – Cosmology Summer School 2016

Outline

- 1. The Euclid mission and NISP spectrograph for clustering
- 2. The NISP spectroscopic survey
- 3. Forecasts for BAO and RSD

The ESA-Euclid space mission

- A space mission dedicated to dark energy and dark matter
- A 1.2m diameter telescope, visible + IR, low background (Lagrange L2 point)
- 2 survey instruments
 - VIS: the VISible imager
 - NISP: the near Infrared Spectrograph and Photometer
- An integrated survey
 - Wide survey: 15000 deg² in imaging (2G galaxies) and spectroscopy (50M spectra)
 - Deep survey: 40 deg² in imaging and spectroscopy

Euclid « All sky » survey

All the extragalactic sky (away from the Milky Way) 2 billion galaxy images 50 million galaxy redshifts To z~2: 10 billion years back

Euclid

EUCLID CONSORTIUM

From Y. Mellier, EC-Lead

Measuring clustering with Euclid

Anisotropy of the correlation function or power spectrum (RSD) as a measure of the growth of structure

Baryonic Acoustic Oscillations in the galaxy power spectrum as a standard ruler (one $\Delta z=0.2$ redshift slice)

From Guzzo Euclid-Marseille 2014

Measuring clustering with Euclid

From Guzzo Euclid-Marseille 2014

From science goals to experiment Putting it all • RSD: Probe together Science: Galaxy of structure growth clustering • BAO • All sky (15000 deg²) Survey • R~300 Parameter • Z~0.7-2 Space • $H\alpha$ selected Slitless spectroscopy & Instrument imaging • Wide field 0.5 Concept deq² • 0.9-1.8 microns Survey Implementation

NISP: infrared spectrograph & camera

Technical specifications:

- Field of view: 0.54 deg² (2.7x the full moon)
- Infrared: 0.8 to 2 microns
- Spectrograph designed to get the H α line up to z~2

Build in Marseille, LAM-AMU leadership, with CPPM, under CNES overall agency responsibility

Euclid-NISP: in full development

- First design 2010
- Critical Design Review (CDR): Sept.
 - Existing models, tested
- Delivered to ESA: 2018
- In flight: 2020

Measuring clustering with Euclid

- NISP will produce slitless spectroscopy
- This implies superimposition of spectra from different objects (at different redshifts...).
- The challenge is to get rid of this contamination and ensure a robust redshift measurement
- Evaluate the reliability of the redshift measurement per object
- Do all this automatically for ~50 million objects

Extracting the spectra and redshifts

- Extract all galaxy spectra
 - Measure redshifts <u>automatically</u>
- Find 50M Hα emitters
 0.8<z<2
- Accurately measure line flux
- Estimate uncertainties

Simulated galaxy at z=1.647

Extracting spectra: contamination

Paving the sky

from Scaramella Euclid-Lisbon 2016

Know the background and instrument: predict the SNR

For the VIS instrument

from Scaramella Euclid-Lisbon 2016

Understanding the selection function

Target Sampling Rate

Spectroscopic Success Rate

Survey timing

From Scaramella Euclid-Lisbon 2016

Future surveys forecast

Euclid: forecast on H(z) and growth rate

From Guzzo, Euclid-Lisbon 2016

A word on WFIRST

- New kid on the bloc
- Refurbished 2.4m "star wars" telescope
- Wide field + depth combination
- Will be very competitive

Figure 2-17: Product nP_{BAO} of the mean galaxy space density and the amplitude of the galaxy power spectrum at the BAO scale as a function of redshift for the

Wait and see !

- Launch 2020
- 7 years nominal survey
- Lots of opportunities for participation

